您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 单因素方差分析的研究
单因素方差分析什么是方差分析?1.检验多个总体均值是否相等通过对各观察数据误差来源的分析来判断多个总体均值是否相等什么是方差分析?(一个例子)表8-1该饮料在五家超市的销售情况超市无色粉色橘黄色绿色1234526.528.725.129.127.231.228.330.827.929.627.925.128.524.226.530.829.632.431.732.8【例8.1】某饮料生产企业研制出一种新型饮料。饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。现从地理位置相似、经营规模相仿的五家超级市场上收集了前一时期该饮料的销售情况,见表8-1。试分析饮料的颜色是否对销售量产生影响。什么是方差分析?(例子的进一步分析)1.检验饮料的颜色对销售量是否有影响,也就是检验四种颜色饮料的平均销售量是否相同2.设1为无色饮料的平均销售量,2粉色饮料的平均销售量,3为橘黄色饮料的平均销售量,4为绿色饮料的平均销售量,也就是检验下面的假设H0:1234H1:1,2,3,4不全相等3.检验上述假设所采用的方法就是方差分析方差分析的基本思想和原理(几个基本概念)1.因素或因子所要检验的对象称为因子要分析饮料的颜色对销售量是否有影响,颜色是要检验的因素或因子2.水平因素的具体表现称为水平A1、A2、A3、A4四种颜色就是因素的水平3.观察值在每个因素水平下得到的样本值每种颜色饮料的销售量就是观察值方差分析的基本思想和原理(几个基本概念)1.试验这里只涉及一个因素,因此称为单因素四水平的试验2.总体因素的每一个水平可以看作是一个总体比如A1、A2、A3、A4四种颜色可以看作是四个总体3.样本数据上面的数据可以看作是从这四个总体中抽取的样本数据单因素方差分析的数据结构观察值(j)因素(A)i水平A1水平A2…水平Ak12::nx11x12…x1kx21x22…x2k::::::::xn1xn2…xnk方差分析中的基本假定1.每个总体都应服从正态分布对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本比如,每种颜色饮料的销售量必需服从正态分布2.各个总体的方差必须相同对于各组观察数据,是从具有相同方差的总体中抽取的比如,四种颜色饮料的销售量的方差都相同3.观察值是独立的比如,每个超市的销售量都与其他超市的销售量独立方差分析中的基本假定1.在上述假定条件下,判断颜色对销售量是否有显著影响,实际上也就是检验具有同方差的四个正态总体的均值是否相等的问题2.如果四个总体的均值相等,可以期望四个样本的均值也会很接近四个样本的均值越接近,我们推断四个总体均值相等的证据也就越充分样本均值越不同,我们推断总体均值不同的证据就越充分提出假设1.一般提法H0:1=2=…=k(因素有k个水平)H1:1,2,…,k不全相等2.对前面的例子H0:1=2=3=4•颜色对销售量没有影响H0:1,2,3,4不全相等•颜色对销售量有影响方差分析的基本思想和原理(两类方差)1.组内方差因素的同一水平(同一个总体)下样本数据的方差比如,无色饮料A1在5家超市销售数量的方差组内方差只包含随机误差2.组间方差因素的不同水平(不同总体)下各样本之间的方差比如,A1、A2、A3、A4四种颜色饮料销售量之间的方差组间方差既包括随机误差,也包括系统误差构造检验的统计量(计算水平的均值)1.假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全部观察值总和除以观察值的个数2.计算公式为),,2,1(1kinxxinjijii式中:ni为第i个总体的样本观察值个数xij为第i个总体的第j个观察值构造检验的统计量(计算全部观察值的总均值)1.全部观察值的总和除以观察值的总个数2.计算公式为kkiiikinjijnnnnnxnnxxi21111式中:构造检验的统计量(前例计算结果)表8-2四种颜色饮料的销售量及均值超市(j)水平A(i)无色(A1)粉色(A2)橘黄色(A3)绿色(A4)1234526.528.725.129.127.231.228.330.827.929.627.925.128.524.226.530.829.632.431.732.8合计136.6147.8132.2157.3573.9水平均值观察值个数x1=27.32n1=5x2=29.56n2=5x3=26.44n3=5x4=31.46n4=5总均值x=28.695构造检验的统计量(计算总离差平方和SST)1.全部观察值与总平均值的离差平方和2.反映全部观察值的离散状况3.其计算公式为ijxxkinjijixxSST112前例的计算结果:SST=(26.5-28.695)2+(28.7-28.695)2+…+(32.8-28.695)2=115.9295构造检验的统计量(计算组内误差项平方和SSE)1.每个水平或组的各样本数据与其组平均值的离差平方和2.反映每个样本各观察值的离散状况,又称组内离差平方和3.该平方和反映的是随机误差的大小4.计算公式为kinjiijixxSSE112前例的计算结果:SSE=39.084构造检验的统计量(计算组间误差项平方和SSA)1.各组平均值与总平均值的离差平方和2.反映各总体的样本均值之间的差异程度,又称组间平方和3.该平方和既包括随机误差,也包括系统误差4.计算公式为kiiikinjixxnxxSSAi12112前例的计算结果:SSA=76.8455),,2,1(kixix构造检验的统计量(三个平方和的关系)总离差平方和(SST)、误差项离差平方和(SSE)、水平项离差平方和(SSA)之间的关系kiiikinjijkinjijxxnxxxxii12112112SST=SSE+SSA构造检验的统计量(三个平方和的作用)1.SST反映了全部数据总的误差程度;SSE反映了随机误差的大小;SSA反映了随机误差和系统误差的大小2.如果原假设成立,即H1=H2=…=Hk为真,则表明没有系统误差,组间平方和SSA除以自由度后的均方与组内平方和SSE和除以自由度后的均方差异就不会太大;如果组间均方显著地大于组内均方,说明各水平(总体)之间的差异不仅有随机误差,还有系统误差3.判断因素的水平是否对其观察值有影响,实际上就是比较组间方差与组内方差之间差异的大小4.为检验这种差异,需要构造一个用于检验的统计量构造检验的统计量(计算均方MS)1.各离差平方和的大小与观察值的多少有关,为了消除观察值多少对离差平方和大小的影响,需要将其平均,这就是均方差2.计算方法是用离差平方和除以相应的自由度3.三个平方和的自由度分别是SST的自由度为n-1,其中n为全部观察值的个数SSA的自由度为k-1,其中k为因素水平(总体)的个数SSE的自由度为n-k构造检验的统计量(计算均方MS)1.SSA的均方也称组间方差,记为MSA,计算公式为1kSSAMSA2.SSE的均方也称组内方差,记为MSE,计算公式为knSSEMSE6152.25148455.76MSA前例的计算结果:4428.2420084.39MSE前例的计算结果:构造检验的统计量(计算检验的统计量F)1.将MSA和MSE进行对比,即得到所需要的检验统计量F2.当H0为真时,二者的比值服从分子自由度为k-1、分母自由度为n-k的F分布,即),1(~knkFMSEMSAF486.104428.26152.25F前例的计算结果:构造检验的统计量(F分布与拒绝域)如果均值相等,F=MSA/MSE1aF分布Fa(k-1,n-k)0拒绝H0不能拒绝H0F统计决策将统计量的值F与给定的显著性水平a的临界值Fa进行比较,作出接受或拒绝原假设H0的决策根据给定的显著性水平a,在F分布表中查找与第一自由度df1=k-1、第二自由度df2=n-k相应的临界值Fa若FFa,则拒绝原假设H0,表明均值之间的差异是显著的,所检验的因素(A)对观察值有显著影响若FFa,则不能拒绝原假设H0,表明所检验的因素(A)对观察值没有显著影响单因素方差分析表(基本结构)方差来源平方和SS自由度df均方MSF值组间(因素影响)组内(误差)总和SSASSESSTk-1n-kn-1MSAMSEMSAMSE方差分析中的多重比较(作用)1.多重比较是通过对总体均值之间的配对比较来进一步检验到底哪些均值之间存在差异2.多重比较方法有多种,这里介绍Fisher提出的最小显著差异方法,简写为LSD,该方法可用于判断到底哪些均值之间有差异3.LSD方法是对检验两个总体均值是否相等的t检验方法的总体方差估计加以修正(用MSE来代替)而得到的方差分析中的多重比较(步骤)1.提出假设H0:i=j(第i个总体的均值等于第j个总体的均值)H1:ij(第i个总体的均值不等于第j个总体的均值)2.检验的统计量为)(~11kntnnMSExxtjiji3.若|t|ta2,拒绝H0;若|t|ta2,不能拒绝H0方差分析中的多重比较(基于统计量xi-xj的LSD方法)1.通过判断样本均值之差的大小来检验H02.检验的统计量为:xi–xj3.检验的步骤为提出假设•H0:i=j(第i个总体的均值等于第j个总体的均值)•H1:ij(第i个总体的均值不等于第j个总体的均值)计算LSDjinnMSEtLSD112a若|xi-xj|LSD,拒绝H0,若|xi-xj|LSD,不能拒绝H0方差分析中的多重比较(实例)1.根据前面的计算结果:x1=27.3;x2=29.5;x3=26.4;x4=31.42.提出假设H0:i=j;H1:ij3.计算LSD096.251514428.212.2LSD方差分析中的多重比较(实例)|x1-x2|=|27.3-29.5|=2.22.096颜色1与颜色2的销售量有显著差异|x1-x3|=|27.3-26.4|=0.92.096颜色1与颜色3的销售量没有显著差异|x1-x4|=|27.3-31.4|=4.12.096颜色1与颜色4的销售量有显著差异|x2-x3|=|29.5-26.4|=3.12.096颜色2与颜色3的销售量有显著差异|x2-x4|=|29.5-31.4|=1.92.096颜色2与颜色4的销售量没有显著差异|x3-x4|=|26.4-31.4|=52.096颜色3与颜色4的销售量有显著差异
本文标题:单因素方差分析的研究
链接地址:https://www.777doc.com/doc-2606084 .html