您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 化工原理实验指导书(化学专业)
实验一、离心泵特性测定实验一、实验目的1.了解离心泵结构与特性,学会离心泵的操作;2.掌握离心泵特性曲线测定方法。3.学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、C1000、电动调节阀以及相关仪表的原理和操作;二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率P及效率η与泵的流量qV之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。1.扬程H的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:22112212HH22fpupuzzgggg(1-1)由于两截面间的管长较短,通常可忽略阻力项fh,速度平方差也很小故可忽略,则有(Hgppzz1212)0pgH(1-2)式中:120zzH,表示泵出口和进口间的位差,m;和ρ——流体密度,kg/m3;g——重力加速度m/s2;p1、p2——分别为泵进、出口的真空度和表压,Pa;H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u1、u2——分别为泵进、出口的流速,m/s;z1、z2——分别为真空表、压力表的安装高度,m。由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。2.轴功率P的测量与计算PNk电(W)(1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取95.0=k。3.效率η的计算泵的有效功率Pe可用下式计算:PveHqg(1-4)故泵效率为100%vHqgP(1-5)三、实验装置与流程离心泵特性曲线测定装置流程图如下:1-水箱;2-离心泵;3—铂热电阻(测量水温);4-泵进口压力传感器;5-泵出口压力传感器;6-灌泵口;7-电器控制柜;8—离心泵实验管路(光滑管);9-离心泵的管路阀;10—涡轮流量计;11-电动调节阀;12-旁路闸阀;13-离心泵实验电动调节阀管路球阀;图2-2实验装置流程示意图四、实验步骤及注意事项1.实验步骤:(1)清理水箱中的杂质,然后加装实验用水。给离心泵灌水,直到排出泵内气体。(2)检查各阀门开度和仪表自检情况,试开状态下检查电机和离心泵是否正常运转。开启离心泵之前先将出口阀关闭,当泵达到额定转速后方可逐步打开出口阀。试验管路选择光滑管。(3)实验时,通过组态软件或者仪表逐渐增加电动调节阀的开度以增大流量,待各仪表读数显示稳定后,读取相应数据。离心泵特性实验主要获取实验数据为:流量qv、泵进口压力p1、泵出口压力p2、电机功率N电、流体温度t和两测压点间高度差H0(H0=0.1m)。(4)最大流量在5.3m3/h左右,每隔0.6作为一个测量点,测取8组左右数据后,可以停泵,同时记录下设备的相关数据(如离心泵型号,额定流量、额定转速、扬程和功率等),停泵前先将出口阀关闭。2.注意事项:(1)一般每次实验前,均需对泵进行灌泵操作,以防止离心泵气缚。同时注意定期对泵进行保养,防止叶轮被固体颗粒损坏。(2)泵运转过程中,勿触碰泵主轴部分,因其高速转动,可能会缠绕并伤害身体接触部位。(3)不要在出口阀关闭状态下长时间使泵运转,一般不超过三分钟,否则泵中液体循环温度升高,易生气泡,使泵抽空。五、数据记录水温T=实验次数流量qvm3/h泵进口压力p1kPa泵出口压力p2kPa电机功率N电kW六、实验报告1.分别绘制一定转速下的H~qv、P~qv、η~qv曲线2.分析实验结果,判断泵最为适宜的工作范围。七、思考题1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?2.启动离心泵之前为什么要引水灌泵?为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?实验二、流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。3.测定流体流经管件、阀门时的局部阻力系数。二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221udlppphff(1)即,22lupdf(2)式中:λ—直管阻力摩擦系数,无因次;d—直管内径,m;fp—流体流经l米直管的压力降,Pa;fh—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。滞流(层流)时,Re64(3)duRe(4)式中:Re—雷诺准数,无因次;μ—流体粘度,kg/(m·s)。湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。由式(2)可知,欲测定λ,需确定l、d,测定fp、u、ρ、μ等参数。l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。根据实验装置结构参数l、d,指示液密度0,流体温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱压差计的读数R,通过式(5)、(6)或(7)、(4)和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。2.局部阻力系数的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。(1)当量长度法流体流过某管件或阀门时造成的机械能损失看作与某一长度为el的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号el表示。这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,则流体在管路中流动时的总机械能损失fh为:22udllhef(5)(2)阻力系数法流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即:2'H2ffpugg(6)故22fpu(7)式中:—局部阻力系数,无因次;fp-局部阻力压强降,Pa;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)ρ—流体密度,kg/m3;g—重力加速度,9.81m/s2;u—流体在小截面管中的平均流速,m/s。待测的管件和阀门由现场指定。本实验采用阻力系数法表示管件或阀门的局部阻力损失。根据连接管件或阀门两端管径中小管的直径d,指示液密度0,流体温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱压差计的读数R,通过式(7)求取管件或阀门的局部阻力系数。三、实验装置与流程1.实验装置实验装置如图1所示:1-离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电气仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12-局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱图1实验装置流程示意图2.实验流程实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U型压差计等所组成的。管路部分有三段并联的长直管,分别为用于测定局部阻力系数,光滑管直管阻力系数和粗糙管直管阻力系数。测定局部阻力部分使用不锈钢管,其上装有待测管件(闸阀);光滑管直管阻力的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。3.装置参数装置参数如表1所示。表1装置1名称材质管内径(mm)测量段长度(cm)管路号管内径局部阻力闸阀1A20.095光滑管不锈钢管1B20.0100粗糙管镀锌铁管1C22.0100四、实验步骤1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开关,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。2.实验管路选择:选择实验管路,把对应的进口阀打开,并在出口阀最大开度下,保持全流量流动5-10min。3.流量调节:手控状态,电动调节阀的开度选择100,然后开启管路出口阀,调节流量,让流量从最大4m3/h开始测量,建议每次实验变化0.4m3/h左右。每次改变流量,待流动达到稳定后,记下对应的压差值;自控状态,流量控制界面设定流量值或设定电动调节阀开度,待流量稳定记录相关数据即可。共测量6组数据。4.计算:装置确定时,根据P和u的实验测定值,可计算λ和ξ,在等温条件下,雷诺数Re=duρ/μ=Au,其中A为常数,因此只要调节管路流量,即可得到一系列λ~Re的实验点,从而绘出λ~Re曲线。5.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。五、实验数据处理序号流量(m3/h)光滑管压差(KPa)粗糙管压差(KPa)局部阻力压差(KPa)123456六、实验报告1.根据粗糙管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照化工原理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。2.根据光滑管实验结果,对照柏拉修斯方程,计算其误差。3.根据局部阻力实验结果,求出闸阀全开时的平均ξ值。4.对实验结果进行分析讨论。恒压过滤常数测定实验一、实验目的1.熟悉板框压滤机的构造和操作方法;2.通过恒压过滤实验,验证过滤基本原理;3.学会测定过滤常数K、qe、τe及压缩性指数S的方法;4.、5.了解操作压力对过滤速率的影响。二、基本原理过滤是以某种多孔物质作为介质来处理悬浮液的操作。在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为:LpaKu223')1(1(1)u:过滤速度,m/sK’:康采尼常数,层流时,K’=5.0ε:床层空隙率,m3/m3μ:滤液粘度,Pasa:颗粒的比表面积,m2/m3△p:过滤的压强差,PaL:床层厚度,m由此可以导出过滤基本方程式:)('12VeVvrpAddVs(2)V:过滤体积,m3τ:过滤时间,sA:过滤面积,m2Ve:虚拟滤液体积,m3r:滤饼比阻,1/m2,r=5.0a2(1-ε)2/ε3r’:单位压强下的比阻,1/m2,r=r’△psv:滤饼体积与相应滤液体积之比,无因次S:滤饼压缩性指数,无因次,一般S=0~1,对不可压缩滤饼,S=0恒压过滤时,令k=1/μr’v,K=2k△p1-s,q=V/A,qe=Ve/A,对(2)式积分得:(q+qe)2=K(τ+τe)(3)K、q、qe三者总称为过滤常数,由实验测定。对(3)式微分得:2(q+qe)dq=KdτeqKqKdqd22(4)用△τ/△q代替dτ/dq,在恒压条件下,用秒表和量筒分别测定一系列时间间隔△τi,和对应的滤液体积△Vi,可计算出一系列△τi、△qi、qi,在直角坐标系中绘制△τ/△q~q的函数关系,得一直线,斜率为2/K,截距为2qe/K,可求得K和qe,再根据τe=qe2/K,可得τe。改变过滤压差△p,可测得不同的K值,由K的定义式两边取对数得:lgK=(1-S)lg(△p)+lg(2k)(5)在实验压差范围内,若k为常数,则lgK~lg(△p)的关系在直角坐标上应是一条直线,斜率为(1-S),可得滤饼压缩性指数S,进而确定物料特性常数k。三、实验装置与流程实验装置如图3-1所示:图3-1板框压滤机过滤流程1-可移动框架2-阀23-止回阀4-压力料罐5-玻璃视镜6-
本文标题:化工原理实验指导书(化学专业)
链接地址:https://www.777doc.com/doc-2620461 .html