您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 包头年中考数学模拟题四答案
1包头2014年中考数学模拟题四答案一、1.A2.A.3.C4.C5.B6.C7.B8.C9.B10.B11.C12B二、填空题(每题3分,共24分)13.x≥3,14.-1,0,115.11aa.16.3217.418.4n+419.220.1三.解答题(共60分)21解:(1)由题意可知;50次摸球实验活动中,出现红球20次,黄球30次,所以红球所占百分比为205040%黄球所占百分比为305060%答:红球占40%黄球占60%(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,所以总球数为5081004。所以红球数为1004040%。答:盒中红球有40个。22.解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.23.解:设第一批玩具每套的进价是x元,则第二批每套进价是(x+10)元,由题意得:2500x×1.5=4500x+10,解得x=50,经检验x=50是分式方程的解.故第一批玩具每套的进价是50元.(2)设每套售价至少是y元,250050×(1+1.5)=125(套).125y-2500-4500≥(2500+4500)×25%,y≥70,那么每套售价至少是70元.24.(1)证明:连接OB。∵OA=OB,∴∠A=∠OBE。∵CE=CB,∴∠CEB=∠EBC,∵∠AED=2∠EBC,∴∠AED=∠EBC,又∵CD⊥OA∴∠A+∠AED=∠OBA+∠EBC=90°,∴BC⊙O是的切线;(2)∵CD垂直平分OA,∴OF=AF,又OA=OF,∴OA=OF=AF,∴∠O=60°,∴∠ABF=30°;(3)作CG⊥BE于G,则∠A=∠ECG。∵CE=CB,BD=10,∴EG=BG=5,∵sinECG=sinA=135,∴CE=13,CG=12.又CD=15,∴DE=2。∵ADE∽△CGE,∴EGDECGAD,即5212AD,∴AD=524,∴OA=548,即⊙O的半径是548。25解:(1)RtA,6AB,8AC,10BC.点D为AB中点,132BDAB.90DHBA,BB.BHDBAC△∽△,DHBDACBC,∴5128103ACBCBDDH(2)QRAB∥,90QRCA.CC,RQCABC△∽△,RQQCABBC,10610yx,即y关于x的函数关系式为:365yx.(3)存在.按腰相等分三种情况:①当PQPR时,过点P作PMQR于M,则QMRM.1290,290C,1C.84cos1cos105C,45QMQP,1364251255x,185x.②当PQRQ时,312655x,6x.ABCDERPHQM21ABCDERPHQ3③当PRQR时,则R为PQ中垂线上的点,于是点R为EC的中点,11224CRCEAC.tanQRBACCRCA,366528x,152x.综上所述,当x为185或6或152时,PQR△为等腰三角形.26解:(1)由t2+2t-24=0,解得t1=-6,t2=4.··························································1分∵t1<t2,∴A(-6,0),B(0,4).······························································2分∵抛物线y=32x2+bx+c的图象经过点A,B两点∴4062==+4-ccb解得4314==cb∴这个抛物线的解析式为y=32x2+314x+4.···········································································································4分(2)∵点P(x,y)在抛物线上,且位于第三象限,∴y<0,即-y>0.又∵S=2S△APO=2×21×|OA|·|y|=|OA|·|y|=6|y|∴S=-6y.··········································································································6分=-6(32x2+314x+4)=-4(x2+7x+6)=-4(x+27)2+25.····················································································7分令y=0,则32x2+314x+4=0,解得x1=-6,x2=-1.∴抛物线与x轴的交点坐标为(-6,0)、(-1,0)∴x的取值范围为-6<x<-1.·······································································8分(3)当S=24时,得-4(x+27)2+25=24,解得:x1=-4,x2=-3.············9分代入抛物线的解析式得:y1=y2=-4.∴点P的坐标为(-3,-4)、(-4,-4).当点P为(-3,-4)时,满足PO=PA,此时,□OPAQ是菱形.当点P为(-4,-4)时,不满足PO=PA,此时,□OPAQ不是菱形.4·········································································································10分要使□OPAQ为正方形,那么,一定有OA⊥PQ,OA=PQ,此时,点的坐标为(-3,-3),而(-3,-3)不在抛物线y=32x2+314x+4上,故不存在这样的点P,使□OPAQ为正方形.····························································12分
本文标题:包头年中考数学模拟题四答案
链接地址:https://www.777doc.com/doc-2629341 .html