您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 北师大版数学必修四第三章三角恒等变形复习题三
北师大版数学必修四第三章三角恒等变形复习题三(P133~135)A组1.化简(1)√1-2sin(3-π)cos(3-π)解析:∵-π/23-π0,则:0π-3π/2∴√[1-2sin(3-π)cos(3-π)]=√[1+2sin(π-3)cos(π-3)]=√[sin²(π-3)+2sin(π-3)cos(π-3)+cos²(π-3)]=√[sin(π-3)+cos(π-3)]²=sin(π-3)+cos(π-3)=sin3-cos3(2)√(1-2sin190°cos190°)/[cos170°+√(1-cos²170°)]sin(α+180°)=-sinα,cos(α+180°)=-cosα,sin(180°-α)=sinα,cos(180°-α)=cosα。∴√(1-2sin190°cos190°)/[cos170°+√(1-cos²170°)]=√(sin²190°+cos²190°-2sin190°cos190°)/(cos170°+|sin170°|)=|sin190°-cos190°|/(cos170°+|sin170°|)=(cos10°-sin10°)/(sin10°-cos10°)=-12.已知tanα=-4/3计算(1)(3sinα+2cosα)/(sinα-4cosα)同时除以cosα得(3sinα+2cosα)/(sinα-4cosα)=(3tanα+2)/(tanα-4)=(3*(-3/4)+2)/(-3/4-4)=(-9+8)/(-3-16)=1/19(2)2sin²α+3sinαcosα-cos²α解:原式=[2sin2а+3sinаcosа-cos2а]/[(sina)^2+(cosa)^2](分母1=sina)^2+(cosa)^2)=[2(tana)^2+3tana-1]/[(tana)^2+1](代入tanα=-3/4)=-34/253.求证(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)∧2(1-sina+cosa)^2=[1-(sina-cosa)]^2=1-2(sina-cosa)+(sina-cosa)^2=1-2sina+2cosa+(sina)^2+(cosa)^2-2sinacosa=2+2cosa-2sina-2sinacosa=2(1+cosa-sina-sinacosa)=2(1-sina)(1+cosa)(2)sin^2α+sin^2β-sin^2αsin^2β+cos^2αcos^2β=1sin^2α+sin^2β-sin^2α·sin^2β+cos^2α·cos^2β=sin^2α·(1-sin^2β)+sin^2β+cos^2α·cos^2β=sin^2α·cos^2β+sin^2β+cos^2α·cos^2β=sin^2α·cos^2β+cos^2α·cos^2β+sin^2β=cos^2β·(sin^2α+cos^2α)+sin^2β=cos^2β+sin^2β=1(3)tanAsinA/(tanA-sinA)=(tanA+sinA)/tanAsinAtanAsinA/(tanA-sinA)=sinA/cosA*sinA/(sinA/cosA-sinA)=sinA/cosA*sinA*(1/cosA+1)/{(1/cosA+1)*(sinA/cosA-sinA)}=sinA*sinA(1/cosA+1/cos^2A)/{sinA*(1/cos^2A-1)}=sinA*sinA(1/cosA+1/cos^2A)*cosA/(sinA*sin^2A/cosA)=sinA(1+1/cosA)/tanAsinA=(tanA+sinA)/tanAsinA4.选择题(1)下列表达式中,正确的是(A)A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+v)cosαcosβ+sinαsinβC.sin(α-β)=cosαcosβ-sinαsinβD.cos(α-β)=cosαcosβ-sinαcosβ(2)若tan110°=a,则tan50°的值(D)A.(a+√3)/(1+a*√3)B.(√3-a)/(1+a*√3)C.(a-√3)/(1-a*√3)D.(a-√3)/(1+a*√3)【过程:根据正切两角差公式:tan(a-b)=(tana-tanb)/(1+tana*tanb)tan50=tan(110-60)=(tan110-tan60)/(1+tan110*tan60)=(a-√3)/(1+a*√3)】(3)若sin(α-β)cosα-cos(α-β)sinα=m且β为第三象限角,则cosβ的值(B)A.√(1-m^2)B.-√(1-m^2)C.√(m^2-1)D.-√(m^2-1)【过程:∵cos(α-β)cosα+sin(α+β)sinα=m∴cos(α-β-α)=mcos(-β)=mcosβ=mβ为第三象限角sinβ=-√(1-m^2)】(4)化简√1-sin20°的结果是(B)A.cos10°B.cos10°-sin10°C.sin10°-cos10°D.±(cos10°-sin10°)【过程1-sin20°=(sin10°)^2-2sin10°cos10°+(cos10°)^2=(sin10°-cos10°)^2∵cos10°sin10°∴原式=cos10°-sin10°】(5)7/16-7/8sin²15°的值为(C)A.7/16B.7/32C.7√3/32D.7√3/16【过程sin^215°=(1-cos30°)/27/16-7/8sin^215°=7/16-(7-7cos30°)/16=7√3/32】(6)化简tan(π/4+A)-tan(π/4-A)的值为(C)A.2tanAB.-2tanAC.2tan2AD.-2tan2A【过程:tan(π/4+A)-tan(π/4-A)=[tan(π/4)+tanA]/[1-tan(π/4)tanA]-[tan(π/4)-tanA]/[1+tan(π/4)tanA]=(1+tanA)/(1-tanA)-(1-tanA)/(1+tanA)=4tanA/(1-tan²A)=2tan2A】5.已知sinα+cosα=4/5,那么sin2α=-9/25【过程:∵sin2a=2sinacosa2sinacosa=(sina+cosa)²-(sin²a+cos²a)=16/25-1=-9/25∴sin2a=-9/25】6.已知sin(α+45°)=3/5,45°α135°,那么sinα=7√2/10【过程:∵45°α135°,∴90°α+45°180°,cos(α+45°)0cos(α+45°)=-√(1-9/25)=-4/5sinα=sin(α+45°-45°)=sin(α+45°)cos45°-cos(α+45°)sin45°=3/5*√2/2-(-4/5)*√2/2=7√2/10】7.已知tanα=4/3,225°α270°,求cos2α和sin2α的值。sin2α=(2tanα)/[1+(tanα)^2]=24/25cos2α=[1-(tanα)^2]/[1+(tanα)^2]=-7/258.若cos2α=a,求sin^4α-cos^4α的值cos2α=1-2(sinα)^2=2(cosα)^2-1=a(sinα)^2=(1-a)/2、(cosα)^2=(1+a)/2(sinα)^4+(cosα)^4=[(sinα)^2+(cosα)^2]^2-2(sinα)^2(cosα)^2=1-(1-a)(1+a)/2=1+(a^2-1)/2=(a^2+1)/29.已知sin(α+β)=1/2,sin(α-β)=1/3,求tanα/tanβ的值解:tanα/tanβ=sinαcosβ/cosαsinβ由sin(α+β)=1/2,得到sinαcosβ+cosαsinβ=1/2sin(α-β)=1/3,得到sinαcosβ-cosαsinβ=1/3联立,sinαcosβ=5/12cosαsinβ=1/12sinαcosβ/cosαsinβ=510.求证(1)tan(α+β)-tanα/1+tanαtan(α+β)=sin2β/2cos2^β根据公式tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)有左边=.(tan(α+β)-tanα)/(1+tanαtancos2βtan[(α+β)-α]=tanβ右边=sin2β/2cos²β=(2sinβcosβ)/2cos²β=sinβ/cosβ=tanβ由左边=右边,得(tan(α+β)-tanα)/(1+tanαtan(α+β))=sin2β/2cos平方β(2)sinθ(1+cos2θ)=sin2θcosθsinθ(1+cos2θ)=sin2θcosθ∵cos2θ=cos(θ+θ)=cosθcosθ-sinθsinθ=2cos²θ-1sinθ(1+cos2θ)=sinθ[1+(2cos²θ-1)]=sinθ2cos²θ=(2sinθcosθ)cosθ=sin2θcosθ(3)sin^4α+cos^4α=1-1/2sin^2αsin^4α+cos^4α=1-1/2sin平方2αsin^4α+cos^4α=(sin²α)²+(cos²α)²=(sin²α+cos²α)²-2sin²αcos²α=1²-2(sinαcosα)²=1-2(1/2sin2α)²=1-1/2sin²2α11.求下列函数的周期及最大值、最小值。(1)y=sin3xcos3x(1)y=sin3xcos3x=1/2sin6x周期=π/3最大值=1/2最小值=-1/2(2)y=1/2-sin^2x(2)y=1/2-sin^2x=1/2-(1-cos2x)/2=1/2cos2x周期=π最大值=1/2最小值=-1/2(3)y=sin(x-π/3)cosx(3)y=sin(x-π/3)cosx=1/2[sin(2x-π/3)+sin(-π/3)]=1/2sin(2x-π/3)-√3/4所以周期=π最大值=1/2-√3/4最小值=-1/2-√3/412.化简√(1-sinαsinβ)²-cos²αcos²β(-π/2αβπ/2)(1-sinα*sinβ)²-(cosα)²(cosβ)²=(1-sinα*sinβ+cosα*cosβ)*(1-sinα*sinβ-cosα*cosβ)=[1+cos(α+β)]*[1+cos(α-β)]=2*cos[(α+β)/2]²*2*cos[(α-β)/2]²∴化简:原式=±2*cos[(α+β)/2]*cos[(α-β)/2]=±(cosα+cosβ)∵(-π/2αβπ/2)∴取正号【插一条:别小看这些我弄得比第一章更辛苦。。。要校正答案还要排版找过程弄了第五天呢!那个才弄了两天。。。喜欢的就粉我一下嘛~算是对我的肯定眼睛困得都睁不开了。。】B组1.化简cosα√(1-sinα/1+sinα)+sinα√(1-cosα/1+cosα)cosα*√[(1-sinα)/(1+sinα)]+sinα*√[(1-cosα)/(1+cosα)]=cosα*√[(1-sinα)^2/(1-sin^2α)]+sinα*√[(1-cosα)^2/(1-cos^2α)]=cosα*(1-sinα)/cosα+sinα*(1-cosα)/sinα=(1-sinα)+(1-cosα)=2-sinα-cosα2.已知sinα+cosα=4/5,且3π/2α2π,计算(1)sinα-cosα∵(sinα+cosα)²=1+sin2α=16/25∴sin2α=-9/25∴(sinα-cosα)²=1-sin2α=34/25∴sinα-cosα=√(sinα-cosα)²=±√34/5∵3π/2α2π∴sinα0,cos0∴sinα-cosα0∴sinα-cosα=-√34/5(2)1/(cosα)^2-1/(sinα)^21/(cosα)^2-1/(sinα)^2=(sin²α-cos²α
本文标题:北师大版数学必修四第三章三角恒等变形复习题三
链接地址:https://www.777doc.com/doc-2638544 .html