您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 关于汽包水位测量的文章
影响三种汽包水位计的因素及防范措施:0O;f1f*B3Y$N%p一、云母双色水位计:|)F`e6q8bW1、环境温度对云母水位计的影响由于云母双色水位计处于环境温度下,温度较低。其冷凝水密度高于汽包内饱和水密度,因此指示水位必低于汽包内重力水位。环境温度越低,冷却水平均密度越大,故误差越大。防范措施是加强对云母水位计汽水连通管路和水位计本体的保温。;a/h$2、锅炉冷态启动或更换云母片后对云母水位计的影响机组冷态启动时,当汽包升压到一定值时,水位工业电视系统CRT上看云母双色水位计往往模糊不清。其原因是汽包受热后,水位计汽水管路、支架发生膨胀,相对位置发生了变化,摄像头与双色水位计的角度偏离了最佳视角所致。另外更换了云母片后也有相同现象发生。防范措施是适时适当调准。我厂多次发生在CRT上看云母双色水位计水汽界面不清的现象,后来把水位监视摄像机改成了位置可移动式,摄像头改成定焦自动光圈型后,调节就变得方便简单,而且显示更清楚。二、电接点水位计-Y*X,T.N4W4r*X*a-]1、汽包水质对电接点水位计的影响汽包内的水质结垢,化学腐蚀及气泡堆堵造成水侧电接点与筒体的“开路”故障。会造成二次表显示水位不准,或水柱间断显示,误发水位报警信号等异常现象。P'R-s2Z&J%Q.]2、水位计的电极挂水影响#UV2N7P/g3C电接点水位计的测量筒因随环境温度的快速冷凝及水浪冲击,造成高导电的炉水沿电极和筒壁溅延,导致电极上形成“挂水”短路现象。挂水后形成电极间连通,同样会造成水位显示的错误。9R9Uk)G0[5c!Ll4o3、阀对电接点水位计的影响5e%b%Y+~(q3_!A(x(C-j*g电接点水位计测量筒降水阀的作用是将测量筒与下降管构成一个循环回路,将测量筒里的水不断地引到下降管中去,以保持测量筒里的凝水温度和密度与汽包内一致。但在实际应用中我们发现降水阀的开度对测量有很大的影响。降水阀开度大时测量出的水位偏低且水位不稳;开度小时起不到降水阀的作用,而且多了降水阀后也增加了测量筒检修的隔离难度,这样设计的系统在更换电极时也较难判断测量筒是否已可靠隔离。因此我们采取的措施是将测量筒到下降管的管路取消,增加一路向空排汽阀。因此,防止以上几个因素对电接点水位计的影响,主要措施是采取合理的保温措施,确保汽包小室的环境温度、采用数字逻辑判断电路等方法,以提高对炉水和蒸汽的分辨能力。同时我们也在#1炉上偿试采用进口型电接点水位计,使用下来发现进口型无论在可靠性还是可维修性上都比国产型有明显的优势。三、压式水位计1、水柱对差压式水位计的影响;r%|1{*Q8H0d#Y6]锅炉启动时由于汽包内温度低、压力低,平衡容器内可能无水而无法建立参比水柱。因此采用锅炉上水时向平衡容器内注水,同时,在汽包满水时及时排出取样管路中的空气泡和杂质,使差压变送器的取样管路全部充满清洁的水。同时,运行人员升降汽包水位,观察差压水位表显示值变化是否与实际水位相符。差压式水位计平衡容器与其取样点间连接的取样管应合理保温,否则平衡容器的温度越低,其冷凝水密度增大,水位计输出差压增大,使显示值偏低.但平衡容器罐体不应保温,以产生足够的冷凝水量而保证参比水柱的稳定。引到差压变送器的两根仪表管道应平行敷设、共同保温。2、安装对差压式水位计的影响9MH5S~/W6u-X9W变送器汽侧取样管上安装有平衡容器。平衡容器也称凝结容器,通常是一个球型容器或筒型容器。容器侧面水平引出一个管口接到汽包上的汽侧取样孔。容器底部垂直引出一个管口接到差压变送器的负压侧(属正接方式)。进入平衡容器的饱和蒸汽不断凝结成水,多余的凝结水自取样管流回汽包使容器内的水位保持恒定。为了确保平衡容器内的凝结水能可靠地流回汽包,平衡容器前的汽侧取样管应向汽包侧下倾斜。由于同一汽包三个平衡容器的汽连通管及容器安装高度不一致,会使汽侧取样管的参比水柱高度不同(变送器均安装在同一高度),从而造成三个汽包水位测量值之间存在较大偏差.解决的办法是待锅炉启动且热膨胀稳定后核对三个平衡容器的高度是否一致,并核对平衡容器与汽包几何中心线(零水位线)间高度是否有变化,否则应在DCS修正。应水位差压信号比较小,变送器的接头漏水或平衡阀内漏对信号影响很大,根据目前变送器的受压能力,我们取消了平衡阀,并将多次弹出的卡套式变送器接头改为标准压力表式接头。3、电伴热带对差压式水位计的影响电伴热带是冬季防止汽包水位测量管路结冰的一项措施,正常时水位变送器正压负压侧伴热带的发热量基本一致,对水位测量的影响较小,但当正压负压侧的发热量不一致时,伴热带就会对汽包水位的正确测量产生重大影响。我厂#3炉曾发生过这样一个故障:汽包双色水位计、电接点水位计均显示正常,但原本误差稳定的三个差压式水位计中有一个与另外两路信号偏差加大。检查后发现,由于差压式水位变送器取样管路上缠绕的伴热带温控失灵使正负压侧水柱温度和密度偏差加大,造成正压和负压取样管的水柱压差增大。另外我厂也曾发生因伴热带短路跳闸和管路结冰引起差压式水位计测量不准的故障.解决此问题的措施是根据季节温度及时投用和停用电伴热装置,并将伴热带检查作为入冬前的常规安全检查项目。.h+K3f*p0E8E#J(t%g4、锅炉启动初期差压式水位计8T&o4D(l3r8FE.S锅炉启动初期差压式水位计一般较难准确测量水位,出现的问题也比较多,我们认为这是由于锅炉启动初期由于汽包内温度低、压力低,平衡容器内较难建立参比水柱及仪表管积存空气杂质等原因所致。测量汽包水位:请用双室平衡容器-引压管-三阀组-差压变送器(然后负迁移)-智能数字调节-伺服器-调节阀。组成完整的调节回路。按锅炉汽包直经,选差压变送器的量程。在测量汽包水位时,蒸汽流量波动时要当心引起“虚假水位”单冲量调节请选用宇电AI调节器AI-808AL5L2L2控制电动调节阀,伺服机构一体化。5.补偿系统5.1.基础知识与基本概念从容器的特性中可以看到,双室平衡容器不能完全满足生产的需要。究其原因,是由于介质密度的变化所造成的。因此,必须要采取一定的措施,进一步消除密度变化对汽包水位测量的影响。这种被用来消除密度变化带来的影响的措施就叫做补偿。通过补偿以准确地测定汽包中的水位。汽包水位测量补偿的方法通常有两种,一种是压力补偿,另一种是温度补偿,无论采取哪种方法补偿效果都一样。但是它们之间略有区别,即温度补偿可以从0℃开始,而压力补偿只能从100℃开始。这是因为温度可以一一对应饱和密度以及100℃以下时的非饱和密度,而压力却只能一一对应饱和密度,即最低压力0MPa只能对应100℃时的饱和密度。故而由这两种方法构成的补偿系统各自对应的补偿起始点有所不同,即差压变送器量程有所不同。表1中0MPa对应两行差压值,其原因即在于此;其中上一行对应的是温度补偿,下一行对应压力补偿。很显然,温度补偿也可以从100℃开始。5.2.建立补偿系统的步骤第一步确定双室平衡容器的0水位位置容器的0水位的位置一般情况下比较容易确定,通过查阅锅炉制造厂家有关汽包(学名锅筒)及附件方面的图纸和资料,进行比较和计算即可获得。文中例举的容器0水位位置位于连通器水平管轴线以上365mm处,即基准杯口水所在的平面下方215mm处。但是,偶尔由于图纸的疏漏缺少与确定0水位相关的数据,无法计算出0水位的位置,那么确定起来就比较复杂。如图1中就缺少数据。这种情况下就只有根据容器的自我补偿特性在0水位所体现的特点通过反复验算来获得。由于容器本身就是用这样的方法经反复验算而设计制造的,只要验算的方法正确通过验算得到的数据会很准确可靠,当然这只限于图纸不详的情况下。由于限于篇幅,这里只提供思路,具体的验算的方法本文不予介绍。对此感兴趣的读者可以试一试。第二步确定差压变送器的量程差压变送器的量程是由汽包水位的测量范围、容器的0水位位置以及补偿系统的补偿起始点等三方面因素决定的。一些用户一般只考虑了前两方面因素,而忽略了补偿起始点因素,甚至极个别的用户只简单地根据汽包水位的测量范围确定变送器的量程,造成很大的测量误差。一般情况下,忽略容器的0水位位置所造成的误差在70~90mm之间,忽略补偿起始点所产生的误差在30mm以下,特别情况下误差都将会更大。此外,这里特别提醒用户,在进行汽包水位测量工作时,关于变送器的量程,在没有得到确认的情况下,切不可单纯依赖设计部门的图纸。事实上,多数情况下,设计部门在进行此类设计,对变送器选型时,只确定基本量程,而不给出应用量程。下面来确定变送器的量程。本文的例子中容器的0水位位置位于连通器水平管轴线以上365mm处。由于该容器的量程为±300mm,因此(1)式中的hw的最大值和最小值分别为665mm和65mm。如果采用压力补偿,从《饱和水与饱和水蒸汽密度表》中查出100℃时的饱和水与饱和水蒸汽的密度代入(1)式,再分别将665mm和65mm代入(1)式,即得最小差压ΔPmin=-70.5mm水柱和最大差压ΔPmax=504mm水柱这两个差压值就是变送器的量程范围(见表1中0MPa对应的下行),即-70.5~504mm水柱。如果采用温度补偿,且从0℃开始补偿,则由于水的密度极其接近1mg/mm3,误差可以忽略,令蒸汽的密度为0。用同样方法即可得到变送器的量程为-85~515mm水柱(见表1中0MPa对应的上行)。实际上,从0℃开始补偿是完全没有必要的,其原因这里无需遨述。第三步确定数学模型数学模型是补偿系统中的最重要环节。由(1)式得(2)由于相对于规定的0水位的汽包水位h=hw-365mm,所以(3)式中h——相对于规定的0水位的汽包水位γw——饱和水的密度γs——饱和水蒸气的密度γc——环境温度下水的密度ΔP——差压(3)式即为补偿系统的数学模型。式中γc为常数,令环境温度为30℃,则γc=0.9956mg/mm3,所以(4)(4)式为最终的数学模型。显然,它与(3)式的作用完全一样。在补偿系统中可以任选其一。第四步确定函数、完成系统在(3)式和(4)式中含都有“320γw-580γs”和“γw-γs”关于饱和水与饱和水蒸汽密度的两个子式。查《饱和水与饱和水蒸汽密度表》,可以获得这两个子式关于压力或温度的函数曲线。将所得到的曲线以及(3)式或者(4)式输入用以执行运算任务硬件设备,补偿系统即告完成。从补偿系统的建立过程可以发现,补偿系统是根据某一特定构造的容器而建立的。因此,建立补偿系统时应根据不同的容器,建立不同的补偿系统。建立补偿系统时,当确定差压的计算公式以后,只需重复这里的步骤即可得到新的汽包水位测量补偿系统。6.关于容器保温问题的释疑众所周知,为了使容器达到理想工作状态,容器的外部必须作以适当的保温。然而,关于容器的凝汽室及顶部的保温问题目前有些争议,部分用户认为这里的保温可有可无。笔者在这里阐述一下个人的观点。笔者通过多年观察发现,在这里没有保温的情况下,冬季由仪表显示的汽包水位会比夏季低将近10mm。分析原因,是因为一般情况下凝汽室的温度都要比环境高300℃左右,甚至更高,因此它的热辐射能力很强。当凝汽室外部没有保温或者保温条件比较差时,尽管凝结水的速度会加快并导致更多的饱和水蒸汽流到这里补充这里的热量,但是由于这里的介质处于自然对流状态且受到管路等的阻力的制约,使补充的热量难以维持这里的温度,进而影响了测量的准确性。对于额定工作压力为13.73MPa的锅炉而言,如果冬季由仪表显示的汽包水位比真实水位低10mm,将意味着容器内部的温度比饱和温度低7℃左右。所以,为确保其包水位测量的准确性,这里必须加以适当的保温。笔者以为,这里的保温以保温层的外层温度不超过120℃为佳锅炉汽包水位测量分析及实践张永先(山东电力建设第二工程公司济南工业路297号,250100)如何有效测量摘要:锅炉汽包水位的正常与否是影响机组安全运行的重要要因素之一,和补偿汽包水位从而进行有效监控成为机组安全运行中的重要环节,本文试图通过理论分析并结合工程实践,谈一谈对锅炉汽包水位测量的体会,为锅炉设备的安全运行提供借签。关键词:关键词:汽包水位测量分析预控防范预控防范前言锅炉汽
本文标题:关于汽包水位测量的文章
链接地址:https://www.777doc.com/doc-2676531 .html