您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 众数中位数平均数与频率分布直方图的关系
众数、中位数、平均数与频率分布直方图的关系用样本数字特征估计总体数字特征(制作老师:欧阳文丰)一众数、中位数、平均数的概念中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.平均数:一组数据的算术平均数,即x=)xxx(n1n211、平均数:由数据及频率计算平均数,即x=x1f1+x2f2+……xkfk(其中fk是xk的频率。)2、加权平均数:由数据及其权数和样本容量计算平均数,即x=(x1n1+x2n2+……xknk)/n(其中nk是xk的权数,n为样本容量,且n1+n2+……nk=n.)3、已知xn的平均数为x,则kxn+b的平均数为kx+b。平均数:一组数据的算术平均数,即二、众数、中位数、平均数与频率分布直方图的关系(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观便于形象地进行分析。)1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。当最高矩形的数据组为〔a,b)时,那么(a+b)/2就是众数。频率组距0.10.20.30.40.5O0.511.522.533.544.5月平均用水量(t)例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.252、从频率分布直方图中估计中位数(中位数是样本数据所占频率的等分线。)•当最高矩形的数据组为〔a,b)时,设中位数为(a+X),根据中位数的定义得知,中位数左边立方图的小矩形面积为0.5,列方程得:•当最高矩形的数据组之前所有小矩形的面积之和为fm;(频率直方图的面积计算,即组距乘以频率/组距。)•x*最高矩形的(频率/组距)+fm=0.5•求解X,那么a+X即为中位数。思考题:如何从频率分布直方图中估计中位数?中位数左边立方图的小矩形面积为0.50~2的小矩形面积之和为:0.5×(0.08+0.16+0.30+0.44)=0.490.200.400.1000.511.522.533.544.50.500.30频率/组距月均用水量/t0.080.160.440.5-0.49=0.010.01/0.5=0.02如图在直线t=2.02之前所有小矩形的面积为0.5所以该样本的中位数为2.02练习.(广东11变式题1)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为45,5555,65,65,75,75,8585,95,,分布直方图如图3,则这20名工人中一天生产的中位数.该产品数量在由此得到频率3、平均数是频率分布直方图的“重心”.是直方图的平衡点.n个样本数据的平均数由公式:)xxx(n1n21X=假设每组数据分别为〔a1,b1)、〔a2,b2)、……〔ak,bk)时,且每组数据相应的频率分别为f1、f2、……fk;那么样本的平均数(或总体的数学期望)由下列公式计算即可。由频率分布直方图估计样本平均数(或总体数学期望)公式:X=(a1+b1)/2*f1+(a2+b2)/2*f2+……(ak+bk)/2*fk(其中每组数据的频率还可以由频率直方图的面积计算而得,即组距乘以频率/组距。)练习.(广东11变式题2)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为45,5555,65,65,75,75,8585,95,,分布直方图如图3,则这20名工人中一天生产的平均数.该产品数量在由此得到频率总体分布的估计练习:对某电子元件进行寿命追踪调查,情况如下:寿命个数100~200200~300300~400400~500500~6002030804030(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电子元件寿命在100h~400h以内的概率;(4)估计电子元件寿命在400h以上的概率;(5)估计总体的数学期望.总体分布的估计100~200200~300300~400400~500500~600寿命合计频率频数累积频率20308040302000.100.150.400.200.1510.100.250.650.851100200300400500600)寿命(h频率/组距0总体分布的估计.65.0:400~10065.0:400~1003的概率为元件寿命在,所以我们估计电子为的电子元件出现的频率出,寿命在)由频率分布表可以看(hhh..:h...:h3504003501502004004以上的概率为估计电子元件寿命在,故我们元件出现的频率为以上的电子命在由频率分布表可知,寿)(...3653655829014015150260050020025004004002400300150230020010022001005期望值(总体均值)为子元件的寿命的我们估计总体生产的电样本的期望值为:......).(思考:从样本数据可知,所求得该样本的众数、中位数和平均数,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.三、用频率分布直方图估计总体数字的特征的利弊:总体的各种数值特征都可以由两种途径来估计,直接利用样本数据或由频率分布直方图来估计。两种方法各有利弊;比如:1、通过频率分布直方图的估计精度低;2、通过频率分布直方图的估计结果与数据分组有关;3、在不能得到样本数据,只能得到频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观便于形象地进行分析。四、三种数字特征的优缺点:(1)众数体现了样本数据的最大集中点,但它显然对其他数据信息的忽视使得无法客观地反映总体特征。(2)中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值不敏感有时也会成为缺点.(3)由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质。但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低。1、在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为_________________;2、已知数据的平均数是3,方差为2,求数据的平均数、方差、标准差?123,,aaa1232,2,2aaa9.5,0.016解:平均数是6,方差是8,标准差是.去掉最高分和最低分合理吗?如果求的平均数、方差、标准差?已知ai的平均数X、方差Y、标准差Z,则b+kai的平均数是b+kx,方差是k的平方与Y的乘积,标准差是k与Z的乘积。(当然Y=Z的平方!)321a2a2a2、、2222总结众数、中位数、平均数与频率分布直方图的关系:1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。2、中位数左边和右边的直方图的面积应该相等,由取可估计中位数的值。3、平均数是直方图的“重心”(平衡点).
本文标题:众数中位数平均数与频率分布直方图的关系
链接地址:https://www.777doc.com/doc-2702647 .html