您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级上数学规律发现专题训练习题
……规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色..地砖块。2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”如图,在一个边长为1的正方形纸版上,依次贴上面积为21,41,81,…,n21的矩形彩色纸片(n为大于1的整数)。请你用“数形结合”的思想,依数形变化的规律,计算n21814121=。3.有一列数:第一个数为x1=1,第二个数为x2=3,第三个数开始依次记为x3,x4,…,xn;从第二个数开始,每个数是它相邻两个数和的一半。(如:x2=231xx)(1)求第三、第四、第五个数,并写出计算过程;(2)根据(1)的结果,推测x8=;(3)探索这一列数的规律,猜想第k个数xk=.(k是大于2的整数)4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_条折痕.如果对折n次,可以得到条折痕.5.观察下面一列有规律的数,486,355,244,153,82,31,根据这个规律可知第n个数是(n是正整数)6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是.第3题......16-1514-1312-1110-9-76-54-32-1第8题9.观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为.10.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色。若每个小长方形的面积都1,则红色的面积是。11.如下图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种12.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位。(1)请你在下表的空格里填写一个适当的代数式:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…第n排的座位数1212+a…(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少座位?13.探索:⑴一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成部分,四条直线最多可以把平面分成部分,试画图说明;⑵n条直线最多可以把平面分成几部分?14.先观察321211=)3121()2111(=1-31=32431321211=)4131()3121()2111(=1-41=43再计算)1(1431321211nn的值.£¨µÚ9Ìâͼ£©第17题15..观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×4+5=41…,猜想:第21个等式应为:16.我们把分子为1的分数叫做单位分数.如21,31,41…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如21=6131,31=12141,41=20151,…(1)根据对上述式子的观察,你会发现51=11.请写出□,○所表示的数;(2)进一步思考,单位分数n1(n是不小于2的正整数)=11,请写出△,☆所表示的式。17.你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。请问这样第__________次可拉出256根面条。19.计算20082007654321的结果是()A.-2008B.-1004C.-1D.021.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为22.如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上24.(本题满分10分)如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,………,请你根据以上操作○□△☆111091287654321OFEDCBA方法得到的正方形的个数的规律完成各题.(1)将下表填写完整;(2)(2)na(用含n的代数式表示).(3)按照上述方法,能否得到2009个正方形?如果能,请求出n;如果不能,请简述理由.25.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.27、观察下面一列数,按某种规律在横线上填上适当的数:1,43,95,167……则第n个数为;
本文标题:七年级上数学规律发现专题训练习题
链接地址:https://www.777doc.com/doc-2797995 .html