您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初中数学动点问题及答案
•例1(2009年兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;•(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;•(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。•例2(2009年齐齐哈尔市)直线364yx与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.•(1)直接写出A、B两点的坐标;•(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;•(3)当S=48/5时,求出点P的坐标,并直接写O、P、Q出以点为顶点的平行四边形的第四个顶点M的坐标.•例3(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S不为0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.图(1)•例4(2009年湖北十堰市)如图①,已知抛物线32bxaxy(a≠0)与轴交于点A(1,0)和点B(-3,0),与y轴交于点C.•(1)求抛物线的解析式;•(2)设抛物线的对称轴与轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.例1解:(1)Q(1,0)···················································································································1分点P运动速度每秒钟1个单位长度.······················································································2分(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,4OFBE.∴1046AF.在Rt△AFB中,228610AB3分过点C作CG⊥x轴于点G,与FB的延长线交于点H.∵90,ABCABBC∴△ABF≌△BCH.∴6,8BHAFCHBF.∴8614,8412OGFHCG.∴所求C点的坐标为(14,12).4分(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,则△APM∽△ABF.∴APAMMPABAFBF.1068tAMMP.∴3455AMtPMt,.∴3410,55PNOMtONPMt.设△OPQ的面积为S(平方单位)∴213473(10)(1)5251010Stttt(0≤t≤10)·································································5分说明:未注明自变量的取值范围不扣分.∵310a0∴当474710362()10t时,△OPQ的面积最大.···································6分此时P的坐标为(9415,5310).····························································································7分(4)当53t或29513t时,OP与PQ相等.··································································9分对一个加1分,不需写求解过程.例2.(1)A(8,0)B(0,6)················1分(2)86OAOB,10AB点Q由O到A的时间是881(秒)点P的速度是61028(单位/秒)··1分当P在线段OB上运动(或03t≤≤)时,2OQtOPt,2St············································································································································1分ABCDEFGHMNPQOxyxAOQPByD当P在线段BA上运动(或38t≤)时,6102162OQtAPtt,,如图,作PDOA于点D,由PDAPBOAB,得4865tPD,········································1分21324255SOQPDtt·····························································································1分(自变量取值范围写对给1分,否则不给分.)(3)82455P,··························································································································1分12382412241224555555IMM,,,,,·····································································3分注:本卷中各题,若有其它正确的解法,可酌情给分.例3(1)过点A作AEx⊥轴,垂足为E(如图1)(34)A,,22435AEOEOAAEOE,,.四边形ABCO为菱形,5OCCBBAOA,(50)C,.·············································································1分设直线AC的解析式为:ykxb,5034kbkb1252kb直线AC的解析式为:1522yx.···············································································1分(2)由(1)得M点的坐标为502,,52OM.如图1,当点P在AB边上运动时,由题意得342OHHM,.113(52)222SBPMHt31550242Stt≤.····························2分当P点在BC边上运动时,记为1P.OCMBCMCOCBCMCM,,,OMBHACxy图1EP1POMCBMC△≌△,52OMBM,90MOCMBC°.1115(25)222SPBBMt,52555242Stt≤.·······································2分(3)设OP与AC相交于点Q,连接OB交AC于点K.AOCABC,AOMABM.90MPBBCO°,BAOBCO,90BAOAOH°,MPBAOH,MPBMBH.当P点在AB边上运动时,如图2.MPBMBH,PMBM.MHPB⊥,2PHHB,1PAAHPH,12t.·························································1分ABOC∥,PAQOCQ.AQPCQO,AQPCQO△∽△,15AQAPCQCO.在RtAEC△中,22224845ACAEEC,253AQ,1053QC.在RtOHB△中,22222425OBHBHO,ACOBOKKBAKCK,,,525OKAKKC,,453QKAKAQ,3tan4OKOQCQK.·······································································································1分当P点在BC边上运动时,如图3,90BHMPBM°,MPBMBH,tantanMPBMBH,53222BMHMBPHBBP,,103BP,256t.·································1分OMBHACxy图2EKPQOMBHACxy图3KPQ105533PCBCBP.由PCOA∥,同理可证PQCOQA△∽△,CQCPAQAO.115534CQCQACQKKCCQAQ,,.5OK,tan1OKOQKKQ.···············································································1分综上所述,当12t时,MPB与BCO互为余角,直线OP与直线AC所夹锐角的正切值为34;当256t时,MPB与BCO互为余角,直线OP与直线AC所夹锐角的正切值为1.(以上各题如有不同解法并且正确,请按相应步骤给分)例4.解:(1)由题知:033903baba……………………………………1分解得:21ba……………………………………………………………2分∴所求抛物线解析式为:322x--xy……………………………3分(2)存在符合条件的点P,其坐标为P(-1,10)或P(-1,-10)或P(-1,6)或P(-1,35)………………………………………………………7分(3)解法①:过点E作EF⊥x轴于点F,设E(a,-2a-2a+3)(-3a0)∴EF=-2a-2a+3,BF=a+3,OF=-a………………………………………………8分∴S四边形BOCE=21BF·EF+21(OC+EF)·OF=21(a+3)·(-2a-2a+3)+21(-2a-2a+6)·(-a)……………………………9分=2929232aa………………………………………………………………………10分=-232)23(a+863∴当a=-23时,S四边形BOCE最大,且最大值为863.……………………………11分此时,点E坐标为(-23,415)……………………………………………………12分解法②:过点E作EF⊥x轴于点
本文标题:初中数学动点问题及答案
链接地址:https://www.777doc.com/doc-2879541 .html