您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年中考数学压轴题精编--河南篇(试题及答案)
2014年中考数学压轴题精编—河南篇2014年中考数学压轴题精编—河南篇12014年中考数学压轴题精编—河南篇1.(河南省)如图,直线y=k1x+b与反比例函数y=xk2(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值;(2)直接写出k1x+b-xk2>0时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.1.解:(1)由题意知:k2=1×6=6······································································1分∴反比例函数的解析式为y=x6又B(a,3)在y=x6的图象上,∴a=2,∴B(2,3)∵直线y=k1x+b过A(1,6),B(2,3)两点∴32611=+=+bkbk解得931==-bk·······························································4分(2)x的取值范围为1<x<2···································································6分(3)当S梯形OBCD=12时,PC=PE····························································7分设点P的坐标为(m,n),∵BC∥OD,CE⊥OD,OB=CD,B(2,3)∴C(m,3),CE=3,BC=m-2,OD=m+2∴S梯形OBCD=21(BC+OD)·CE,即12=21×(m-2+m+2)×3∴m=4,mn=6,∴n=23,即PE=21CE∴PC=PE····························································································10分2.(河南省)(1)操作发现·xyOBCEPAD2014年中考数学压轴题精编—河南篇2014年中考数学压轴题精编—河南篇2如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求ABAD的值;(3)类比探究保持(1)中的条件不变,若DC=n·DF,求ABAD的值.2.解:(1)同意.连接EF,则∠EGF=∠D=90°,EG=AE=ED,EF=EF∴Rt△EGF≌Rt△EDF,∴GF=DF····························································3分(2)由(1)知GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x∴BF=BG+GF=3x在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=22x,∴ABAD=xy2=2····································6分(3)由(1)知GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n·DF,∴DC=AB=BG=nx∴CF=(n-1)x,BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2∴y=n2x,∴ABAD=nxy=nn2(或n2)··············································10分3.(河南省)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.GBCEFADxyOBCMAGBCEFAD2014年中考数学压轴题精编—河南篇2014年中考数学压轴题精编—河南篇33.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),则有02440416=++==+--cbaccba解得4121-===cba∴抛物线的解析式为y=21x2+x-4···································3分(2)过点M作MD⊥x轴于点D,设M点的坐标为(m,21m2+m-4)则AD=m+4,MD=-21m2-m+4∴S=S△AMD+S梯形DMBO-S△ABO=21(m+4)(-21m2-m+4)+21(-21m2-m+4+4)(-m)-21×4×4=-m2-4m(-4<m<0)··································································6分即S=-m2-4m=-(m+2)2+4∴S最大值=4···························································································7分(3)满足题意的Q点的坐标有四个,分别是:(-4,4),(4,-4)(-2+52,2-52),(-2-52,2+52)········································11分xyOBCMAD
本文标题:2014年中考数学压轴题精编--河南篇(试题及答案)
链接地址:https://www.777doc.com/doc-2965871 .html