您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2015数学建模_灰色预测模型
灰色预测模型数学建模2015年灰色系统分析方法在建模中的应用CUMCM2003ASARS的传播CUMCM2005A长江水质的评价和预测CUMCM2006A出版社的资源配置CUMCM2007A中国人口增长预测CUMCM2003ASARS的传播SARS(SevereAcuteRespiratorySyndrome,严重急性呼吸道综合症,俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。CUMCM2003ASARS的传播(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。1、问题水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重。专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染。”长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个CUMCM2005A长江水质的评价和预测重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”(附件1),并发出了“拿什么拯救癌变长江”的呼唤(附件2)。附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。CUMCM2005A长江水质的评价和预测一般说来,江河自身对污染物都有一定的自然净化能力,即污染物在水环境中通过物理降解、化学降解和生物降解等使水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的自然净化能力可以认为是近似均匀的,根据检测可知,主要污染物高锰酸盐指数和氨氮的降解系数通常介于0.1~0.5之间,比如可以考虑取0.2(单位:1/天)。附件4是“1995~2004年长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002)给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。CUMCM2005A长江水质的评价和预测CUMCM2005A长江水质的评价和预测请你们研究下列问题:(1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。(2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区?(3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况。(4)根据你的预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水?(5)你对解决长江水质污染问题有什么切实可行的建议和意见。灰色系统分析方法9一灰色预测的概念;二灰色生成数列;四案例:SARS疫情对某些经济指标影响。三灰色模型GM;一、灰色预测的概念(1)灰色系统、白色系统和黑色系统•白色系统是指一个系统的内部特征是完全已知的,即系统的信息是完全充分的。•黑色系统是指一个系统的内部信息对外界来说是一无所知的,只能通过它与外界的联系来加以观测研究。灰色系统内的一部分信息是已知的,另一部分信息是未知的,系统内各因素间有不确定的关系。•灰色预测法是一种对含有不确定因素的系统进行预测的方法。•灰色预测是对既含有已知信息又含有不确定信息的系统进行预则,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。(2)灰色预测法•灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。•灰色预测法用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。(3)灰色预测的四种常见类型•灰色时间序列预测即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。•畸变预测即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。•系统预测通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。•拓扑预测将原始数据做曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。二、灰色生成数列灰色系统理论认为,尽管客观表象复杂,但总是有整体功能的,因此必然蕴含某种内在规律。关键在于如何选择适当的方式去挖掘和利用它。灰色系统是通过对原始数据的整理来寻求其变化规律的,这是一种就数据寻求数据的现实规律的途径,即为灰色序列的生成。一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。数据生成的常用方式有累加生成、累减生成和加权累加生成。(1)累加生成把数列各项(时刻)数据依次累加的过程称为累加生成过程(AGO)。由累加生成过程所得的数列称为累加生成数列。设原始数列为,令称所得到的新数列为数列的1次累加生成数列。类似地有称为的r次累加生成数列。))(,),2(),1(()0()0()0()0(nxxxx,,,2,1,)()(1)0()1(nkixkxki))(,),2(),1(()1()1()1()1(nxxxx)0(x1,,,2,1,)()(1)1()(rnkixkxkirr)0(x(2)累减生成对于原始数据列依次做前后相邻的两个数据相减的运算过程称为累减生成过程IAGO。如果原始数据列为令称所得到的数列为的1次累减生成数列。注:从这里的记号也可以看到,从原始数列,得到新数列,再通过累减生成可以还原出原始数列。实际运用中在数列的基础上预测出,通过累减生成得到预测数列。))(,),2(),1(()1()1()1()1(nxxxx,,,3,2),1()()()1()1()0(nkkxkxkx)0(x)1(x)0(x)1(x)1(x)1(ˆx)0(ˆx(3)加权邻值生成设原始数列为称为数列的邻值。为后邻值,为前邻值,对于常数,令由此得到的数列称为数列在权下的邻值生成数,权也称为生成系数。特别地,当生成系数时,则称为均值生成数,也称等权邻值生成数。))(,),2(),1(()0()0()0()0(nxxxx)(),1()0()0(kxkx)0(x)1()0(kx)()0(kx]1,0[,,,3,2),1()1()()()0()0()0(nkkxkxkz)0(z)0(x5.0,,,3,2),1(5.0)(5.0)()0()0()0(nkkxkxkz累加生成计算示例例:x(0)=(x(0)(k)︱k=1,2,3,4,5)=x(0)(1),x(0)(2),x(0)(3),x(0)(4),x(0)(5)=(3.2,3.3,3.4,3.6,3.8)求x(1)(k)解:21)0()0()0()1()0()1(5.63.32.3)2()1()()2(,22.3)1()1(,1ixxixxkxxk51)0()1()0()1()0()1(41)0()1()0()1(31)0()1(3.178.35.13)5()4()()5(,55.136.39.9)4()3()()4(,49.94.35.6)3()2()()3(,3iiixxixxkxxixxkxxixxk累加生成的特点一般经济数列都是非负数列。累加生成能使任意非负数列、摆动的与非摆动的,转化为非减的、递增的。原始数列作图1—AGO作图某市的汽车销售量递增的规律原始数列作图1—AGO作图有明显的指数关系的规律某钢厂产量某地区作物产量s型变化规律1),1()())(()()()()11,11,10,5,4,5(IGAO11)5()6()6(,611)4()5()5(,510)3()4()4(,45)2()3()3(,34)1()2()2(,25)1()0()1()1(,10)0(,0)1()()()46,35,24,14,9,5())6(),5(),4(),3(),2(),1((10)0()1()1()0()1()1()0()1()1()0()1()1()0()1()1()0()1()1()1()0()1()1()1()0()1()1()1()1()1()1()1(limtkxkxkxttkxkxdtkdxxxxxkxxxkxxxkxxxkxxxkxxxxkxkkxkxkxxxxxxxxt相当于而有求导性质,这是因为不难看出,累减生成具)(从而有:若解:)(累减生成计算示例灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程,进而用离散数据列建立微分方程形式的动态模型,即灰色模型是利用离散随机数经过生成变为随机性被显著削弱而且较有规律的生成数,建立起的微分方程形式的模型,这样便于对其变化过程进行研究和描述。G表示grey(灰色),M表示model(模型)灰色模型GM(1,1)设为原始数列,其1次累加生成数列为,其中定义的灰导数为令为数列的邻值生成数列,即于是定义GM(1,1)的灰微分方程模型为))(,),2(),1(()0()0()0()0(nxxxx))(,),2(),1(()1()1()1()1(nxxxx,,,2,1,)()(1)0()1(nkixkxki)1(x).1()()()()1()1()0(kxkxkxkd)1(z)1(x),1()1()()()1()1()1(kxkxkz,)()()1(bkazkd即或(1)在式(1)中,称为灰导数,a称为发展系数,称为白化背景值,b称为灰作用量。将时刻表代入(1)式有引入矩阵向量记号:,)()()1()0(bkazkx)()0(kx)()1(kznk,,3,2,)()(,)3()3(,)2()2()1()0()1()0()1()0(bnaznxbazxbazx)()3()2()0()0()0(nxxxYbau1)(1)3(1)2()1()1()1(nzzzB于是GM(1,1)模型可表示为现在问题归结为求a,b在值。用一元线性回归,即最小二乘法求它们的估计值为注:实际上回归分析中求估计值是用软件计算的,有标准程序求解,如matlab等。GM(1,1)的白化型对于GM(1,1)的灰微分方程(1),如果将灰导数的时刻视为连续变量t,则视为时间t函数,于是对应于导数量级,白化背景值对应于导数。于是GM(1,1)的灰微分方程对应于的白微分方程为(2).uYB.)(ˆˆˆ1YBBBbauTT)()0(kxnk,,3,2)1(x
本文标题:2015数学建模_灰色预测模型
链接地址:https://www.777doc.com/doc-2995111 .html