您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2013-2014学年高考数学第二章综合检测新人教A版必修5
1第二章综合检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)1.等比数列{an}中,a7·a11=6,a4+a14=5,则a20a10=()A.23或32B.23C.32D.13或-12[答案]A[解析]在等比数列{an}中,a7·a11=a4·a14=6,又a4+a14=5,∴a4=2a14=3或a4=3a14=2,又a14=a4·q10,∴q10=23或32,∴a20a10=q10=23或32.2.已知等比数列{an}的前n项和为Sn,a1=1,且满足Sn,Sn+2,Sn+1成等差数列,则a3等于()A.12B.-12C.14D.-14[答案]C[解析]∵Sn、Sn+2、Sn+1成等差数列,∴Sn+2-Sn=Sn+1-Sn+2.∴an+2+an+1=-an+2,∴an+2an+1=-12.又a1=1,∴a3=14.3.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.176[答案]B[解析]本题主要考查等差数列的性质及求和公式.2由条件知a4+a8=a1+a11=16,S11=a1+a112=11×162=88.4.已知-1,a1,a2,8成等差数列,-1,b1,b2,b3,-4成等比数列,那么a1a2b2的值为()A.-5B.5C.-52D.52[答案]A[解析]∵-1,a1,a2,8成等差数列,设公差d,∴8-(-1)=3d,∴d=3,∴a1=2,a2=5,∵-1,b1,b2,b3,-4成等比数列,b22=4,又b2=-1·q20,∴b2=-2,∴a1a2b2=-5.5.等差数列{an}中,an-4=30,前9项的和S9=18,前n项的和Sn=240,则自然数n的值是()A.15B.16C.17D.18[答案]A[解析]前9项和S9=9a5=18,∴a5=2,前n项和Sn=na1+an2=na5+an-42=n+2=16n=240,∴n=15.6.等比数列{an}的各项为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10等于()A.12B.10C.8D.2+log35[答案]B[解析]由等比数列的性质可知:a5a6=a4a7=a3a8=…=a1a10,∴a5a6+a4a7=2a1a10=18,∴a1a10=9.∴log3a1+log3a2+…+log3a10=log3(a1·a2·a3·…·a10)=log3(a1a10)5=10.7.已知数列{an}的前n项和为Sn,且Sn=2an-2,则a2等于()A.4B.2C.1D.-23[答案]A[解析]S1=2a1-2=a1,∴a1=2,S2=2a2-2=a1+a2,∴a2=4.8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为()A.1.14aB.1.15aC.11×(1.15-1)aD.10(1.16-1)a[答案]C[解析]设从去年开始,每年产值构成数列为{an},则a1=a,an=a(1+10%)n-1(1≤n≤6),从今年起到第5年是求该数列a2到a6的和,应为S6-a1=a6-1.1-1-a=11×(1.15-1)a.9.若{an}是等差数列,首项a10,a1007+a10080,a1007·a10080,则使前n项和Sn0成立的最大自然数n是()A.2012B.2013C.2014D.2015[答案]C[解析]∵a1007+a10080,∴a1+a20140,∴S2014=2014a1+a201420,∵a1007·a10080,a10,∴a10070,a10080,∴2a1008=a1+a20150,∴S2015=a1+a201520,故选C.10.有穷数列1,23,26,29,…,23n+6的项数是()A.3n+7B.3n+6C.n+3D.n+2[答案]C[解析]此数列的次数依次为0,3,6,9,…,3n+6,为等差数列,且首项a1=0,公差d=3,设3n+6是第x项,3n+6=0+(x-1)×3,所以x=n+3.11.数列22+122-1,32+132-1,…,n+2+1n+2-1的前10项和为()4A.1755B.111112C.1143132D.1189132[答案]C[解析]∵n+2+1n+2-1=n+2-1+2n+2-1=1+2nn+=1+1n-1n+2,∴S10=10+1-13+12-14+13-15+…+110-110+2=10+1+12-110+1-110+2=1143132.12.已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2009=()A.6B.-6C.3D.-3[答案]B[解析]由条件an+2=an+1-an可得:an+6=an+5-an+4=(an+4-an+3)-an+4=-an+3=-(an+2-an+1)=-[(an+1-an)-an+1]=an,于是可知数列{an}的周期为6,∴a2009=a5,又a1=3,a2=6,∴a3=a2-a1=3,a4=a3-a2=-3,a5=a4-a3=-6.二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)13.(2012·辽宁文,14)已知等比数列{an}为递增数列,若a10,且2(an+an+2)=5an+1,则数列{an}的公比q=________.[答案]2[解析]本题考查了等比数列的通项公式.∵{an}是递增的等比数列,且a10,∴q1,又∵2(an+an+2)=5an+1,∴2an+2anq2=5anq,∵an≠0,∴2q2-5q+2=0,∴q=2或q=12(舍去),∴公比q为2.14.(2012~2013学年度辽宁鞍山市第一中学高二期中测试)已知数列{an}的前n项和为Sn,且Sn=3n2+2n-1,则数列{an}的通项公式an=________.5[答案]4n=6n-n=[解析]当n=1时,a1=S1=4;当n≥2时,an=Sn-Sn-1=3n2+2n-1-3(n-1)2-2(n-1)+1=6n-1,a1=4不满足上式.∴an=n=6n-n.15.设等差数列{an}的前n项和为Sn.若a5=5a3,则S9S5=________.[答案]9[解析]解法一:设等差数列{an}的公差为d,∵a5=5a3,∴a1+4d=5(a1+2d),∴a1=-32d,∴S9S5=9a1+12×9×8×d5a1+12×5×4×d=-272d+36d-152d+10d=452d52d=9.解法二:S9S5=a1+a92a1+a52=9×2a525×2a32=9a55a3,∵a5=5a3,∴S9S5=9a55a3=9.16.若数列{an}满足a1=2,an=1-1an-1,则a2013=________.[答案]-1[解析]∵a1=2,an=1-1an-1,∴a2=1-1a1=12,a3=1-1a2=-1,a4=1-1a3=2,a5=1-1a4=12,……∴数列{an}的值呈周期出现,周期为3.∴a2013=a3=-1.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an}、{bn}的通项公式.[解析]设{an}的公差为d,{bn}的公比为q.由a3+b3=17得1+2d+3q2=17,①由T3-S3=12得q2+q-d=4.②6由①、②及q0解得q=2,d=2.故所求的通项公式为an=2n-1,bn=3×2n-1.18.(本题满分12分)(2013·新课标Ⅱ文,17)已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.[解析](1)设{an}的公差为d,由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=n2(a1+a3n-2)=n2(-6n+56)=-3n2+28n.19.(本题满分12分)(2012·广东文,19)设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式.[解析](1)当n=1时,T1=2S1-1,∵T1=S1=a1,所以a1=2a1-1,求得a1=1.(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+1,∴Sn=2Sn-1+2n-1①∴Sn+1=2Sn+2n+1②②-①得an+1=2an+2,∴an+1+2=2(an+2),即an+1+2an+2=2(n≥2).求得a1+2=3,a2+2=6,则a2+2a1+2=2,∴{an+2}是以3为首项,2为公比的等比数列.∴an+2=3·2n-1,∴an=3·2n-1-2,n∈N*.720.(本题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.(1)求数列{bn}的通项公式;(2)若数列{bn}的前n项和为Sn;求证:数列{Sn+54}是等比数列.[解析](1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以{bn}中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去).故{bn}的第3项为5,公比为2.由b3=b1·22,即5=b1·22,解得b1=54.故{bn}是以54为首项,2为公比的等比数列,其通项公式为bn=54·2n-1=5·2n-3.(2)因为数列{bn}的前n项和Sn=54-2n1-2=5·2n-2-54,即Sn+54=5·2n-2,所以S1+54=52,Sn+1+54Sn+54=5·2n-15·2n-2=2.因此{Sn+54}是以52为首项,2为公比的等比数列.21.(本题满分12分)(2012~2013学年度辽宁鞍山市第一中学高二期中测试)设数列{an}满足a1=2,an+1-an=3·4n(n∈N*).(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.[解析](1)由题意,得a2-a1=3×4,a3-a2=3×42,a4-a3=3×43,……an-an-1=3·4n-1(n≥2),以上n-1个式子相加,得an-a1=3(4+42+43+…+4n-1)=3×-4n-11-4=4n-4,8∴an=a1+4n-4=4n-2.a1=2满足上式,∴an=4n-2.(2)bn=nan=n(4n-2),Sn=1×4+2×42+3×43+…+n·4n-2(1+2+…+n),设Tn=1×4+2×42+3×43+…+n·4n,∴4Tn=1×42+2×43+…+(n-1)·4n+n·4n+1,∴-3Tn=4+42+43+…+4n-n·4n+1=-4n1-4-n·4n+1=4-4n+1-3-n·4n+1,∴Tn=4-4n9+n·4n+13=19[(3n-1)·4n+1+4],∴Sn=19[(3n-1)·4n+1+4]-n(n+1).22.(本题满分14分)已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3……),(1)求{an}的通项公式;(2)设bn=1an·a
本文标题:2013-2014学年高考数学第二章综合检测新人教A版必修5
链接地址:https://www.777doc.com/doc-3010700 .html