您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 2006年高考数学试卷(陕西卷.文)含详解
12006高考数学试题陕西卷文科试题(必修+选修Ⅰ)注意事项:1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。3.所有答案必须在答题卡上指定区域内作答。考试结束后,将本试卷和答题卡一并交回。第一部分(共60分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于()A.{2}B.{1,2}C.{2,3}D.{1,2,3}2.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]3.已知等差数列{an}中,a2+a8=8,则该数列前9项和S9等于()A.18B.27C.36D.454.设函数f(x)=loga(x+b)(a0,a≠1)的图象过点(0,0),其反函数的图像过点(1,2),则a+b等于()A.6B.5C.4D.35.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()A.±2B.±2B.±22D.±46.“α、β、γ成等差数列”是“等式sin(α+γ)=sin2β成立”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.设x,y为正数,则(x+y)(1x+4y)的最小值为()A.6B.9C.12D.158.已知非零向量AB→与AC→满足(AB,→|AB,→|+AC,→|AC,→|)·BC→=0且AB,→|AB,→|·AC,→|AC,→|=12,则△ABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形9.已知函数f(x)=ax2+2ax+4(a0),若x1x2,x1+x2=0,则()A.f(x1)f(x2)B.f(x1)=f(x2)C.f(x1)f(x2)D.f(x1)与f(x2)的大小不能确定10.已知双曲线22212xya(a2)的两条渐近线的夹角为π3,则双曲线的离心率为()A.2B.3C.263D.233211.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。13.cos43°cos77°+sin43°cos167°的值为14.(2x-1x)6展开式中常数项为(用数字作答)15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种.16.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)。17.(本小题满分12分)甲、乙、丙3人投篮,投进的概率分别是25,12,13.现3人各投篮1次,求:(Ⅰ)3人都投进的概率;(Ⅱ)3人中恰有2人投进的概率.18.(本小题满分12分)已知函数f(x)=3sin(2x-π6)+2sin2(x-π12)(x∈R)(Ⅰ)求函数f(x)的最小正周期;(2)求使函数f(x)取得最大值的x的集合.19.(本小题满分12分)如图,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:(Ⅰ)直线AB分别与平面α,β所成角的大小;(Ⅱ)二面角A1-AB-B1的大小.320.(本小题满分12分)已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an.21.(本小题满分12分)如图,三定点A(2,1),B(0,-1),C(-2,1);三动点D,E,M满足AD→=tAB→,BE→=tBC→,DM→=tDE→,t∈[0,1].(Ⅰ)求动直线DE斜率的变化范围;(Ⅱ)求动点M的轨迹方程.22.(本小题满分14分)已知函数f(x)=kx3-3x2+1(k≥0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)的极小值大于0,求k的取值范围.ABA1B1αβl第19题图yxOMDABC-1-1-212BE4参考答案一、选择题题号123456789101112答案ABCCBABDADDC1.已知集合P={x∈N|1≤x≤10}={1,2,3,……,10},集合Q={x∈R|x2+x-6=0}={3,2},所以P∩Q等于{2},选A.2.函数f(x)=11+x2(x∈R),∴21x≥,所以原函数的值域是(0,1],选B.3.已知等差数列{an}中,a2+a8=8,∴198aa,则该数列前9项和S9=199()2aa=36,选C.4.函数f(x)=loga(x+b)(a0,a≠1)的图象过点(0,0),其反函数的图象过点(1,2),则log(0)0log(2)1aabb,∴12bba,a=3,则a+b等于4,选C.5.直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,设直线方程为yxa,圆心(0,0)道直线的距离等于半径2,∴||22a,∴a的值±2,选B.6.若等式sin(α+γ)=sin2β成立,则α+γ=kπ+(-1)k·2β,此时α、β、γ不一定成等差数列,若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件。选A.7.x,y为正数,(x+y)(14xy)≥414yxxy≥9,选B.8.已知非零向量AB→与AC→满足(||||ABACABAC)·BC→=0,即角A的平分线垂直于BC,∴AB=AC,又cosA||||ABACABAC=12,∠A=3,所以△ABC为等边三角形,选D.9.已知函数f(x)=ax2+2ax+4(a0),二次函数的图象开口向上,对称轴为1x,a0,∴x1+x2=0,x1与x2的中点为0,x1x2,∴x2到对称轴的距离大于x1到对称轴的距离,∴f(x1)f(x2),选A.10.已知双曲线22212xya(a2)的两条渐近线的夹角为π3,则23tan63a,∴a2=6,双曲线的离心率为233,选D.11.已知平面α外不共线的三点A、B、C到α的距离都相等,则可能三点在α的同侧,即.平面ABC平行于α,这时三条中位线都平行于平面α;也可能一个点A在平面一侧,另两点B、C在平面另一侧,则存在一条中位线DE//BC,DE在α内,所以选D.512.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16。当接收方收到密文14,9,23,28时,则214292323428abbccdd,解得6417abcd,解密得到的明文为C.二、填空题13.-1214.6015.132016.3R13.cos43°cos77°+sin43°cos167°=cos43cos77sin43sin77cos120=-21.14.(2x-1x)6展开式中常数项22461(2)()60Cxx.15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,可以分情况讨论,①甲去,则乙不去,有3464CA=480种选法;②甲不去,乙去,有3464CA=480种选法;③甲、乙都不去,有46A=360种选法;共有1320种不同的选派方案.16.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,5个球心组成一个正四棱锥,这个正四棱锥的底面边长为4R,侧棱长为3R,求得它的高为R,所以小球的球心到水平桌面α的距离是3R.三、解答题17.解:(Ⅰ)记甲投进为事件A1,乙投进为事件A2,丙投进为事件A3,则P(A1)=25,P(A2)=12,P(A3)=13,∴P(A1A2A3)=P(A1)·P(A2)·P(A3)=25×12×35=325∴3人都投进的概率为325(Ⅱ)设“3人中恰有2人投进为事件BP(B)=P(A1-A2A3)+P(A1A2-A3)+P(A1A2A3-)=P(A1-)·P(A2)·P(A3)+P(A1)·P(A2-)·P(A3)+P(A1)·P(A2)·P(A3-)=(1-25)×12×35+25×(1-12)×35+25×12×(1-35)=1950∴3人中恰有2人投进的概率为195018.解:(Ⅰ)f(x)=3sin(2x-π6)+1-cos2(x-π12)6=2[32sin2(x-π12)-12cos2(x-π12)]+1=2sin[2(x-π12)-π6]+1=2sin(2x-π3)+1∴T=2π2=π(Ⅱ)当f(x)取最大值时,sin(2x-π3)=1,有2x-π3=2kπ+π2即x=kπ+5π12(k∈Z)∴所求x的集合为{x∈R|x=kπ+5π12,(k∈Z)}.19.解法一:(Ⅰ)如图,连接A1B,AB1,∵α⊥β,α∩β=l,AA1⊥l,BB1⊥l,∴AA1⊥β,BB1⊥α.则∠BAB1,∠ABA1分别是AB与α和β所成的角.Rt△BB1A中,BB1=2,AB=2,∴sin∠BAB1=BB1AB=22.∴∠BAB1=45°.Rt△AA1B中,AA1=1,AB=2,sin∠ABA1=AA1AB=12,∴∠ABA1=30°.故AB与平面α,β所成的角分别是45°,30°.(Ⅱ)∵BB1⊥α,∴平面ABB1⊥α.在平面α内过A1作A1E⊥AB1交AB1于E,则A1E⊥平面AB1B.过E作EF⊥AB交AB于F,连接A1F,则由三垂线定理得A1F⊥AB,∴∠A1FE就是所求二面角的平面角.在Rt△ABB1中,∠BAB1=45°,∴AB1=B1B=2.∴Rt△AA1B中,A1B=AB2-AA12=4-1=3.由AA1·A1B=A1F·AB得A1F=AA1·A1BAB=1×32=32,∴在Rt△A1EF中,sin∠A1FE=A1EA1F=63,∴二面角A1-AB-B1的大小为arcsin63.解法二:(Ⅰ)同解法一.(Ⅱ)如图,建立坐标系,则A1(0,0,0),A(0,0,1),B1(0,1,0),B(2,1,0).在AB上取一点F(x,y,z),则存在t∈R,使得AF→=tAB→,即(x,y,z-1)=t(2,1,-1),∴点F的坐标为(2t,t,1-t).要使A1F→⊥AB→,须A1F→·AB→=0,即(2t,t,1-t)·(2,1,ABA1B1αβl第19题解法一图EFABA1B1αβl第19题解法二图yxyEF7-1)=0,2t+t-(1-t)=0,解得t=14,∴点F的坐标为(24,-14,34),∴A1F→=(24,14,34).设E为AB1的中点,则点E的坐标为(0,12,12).∴EF→=(24,-14,14).又EF→·AB
本文标题:2006年高考数学试卷(陕西卷.文)含详解
链接地址:https://www.777doc.com/doc-3077449 .html