您好,欢迎访问三七文档
1初一数学经典题集1、为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?2、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?23、参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是多少?住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分804、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动。男生戴白色安全帽,女生戴红色安全帽。休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到的白色与红色的安全帽一样多,而每位女生看到的白色的安全帽是红色的2倍。问题:根据这些信息,请你推测这群学生共有多少人?5、为准为准备晚会,七(8)班学生到某便利店分两次购买某种饮料70瓶,共用去188元,饮料的价格如下:购买瓶数(瓶)不超过3030以上不超过5050以上单价(元)32.52求两次分别购买饮料多少瓶?6、某开发商进行商铺促销,广告上写着如下条款:3投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?7、小明在汽车上,汽车匀速行驶,他看到公路两旁里路牌上是一个两位数,一小时后,他又看见公里牌上的数是前次两位数个、十位数字互换了一下,又过了一小时,公里牌上的数是一个三位数,它是第一次看见的两位数中间加了一个0,求汽车的速度。8、六点到七点之间,钟面上时钟与分钟何时第一次重合?49、某企业生产一种产品,每件成本400元,消售价为510元,本季度销售m件。为了进一步扩大市场,该企业决定下个季度销售价降低4%,预计销售量将提高10%。要使销售利润保持不变,该产品每件的成本价应降低多少元?10、小宇的妈妈去年经营某款羽绒服,其中进价300元,销售价为450元,今年由于制作该款羽绒服成本上涨导致进价在去年基础上上涨了不少,同时由于“千年极寒”的宣传,今年销售羽绒服的商家很多,竞争加剧。小宇的妈妈为了不库存,决定按去年销售价的九折销售。经预算,今年销量较之去年翻番的情况下,毛利才和去年一样,请问今年的进价提高了百分之几?其中毛利=(销售价-进价)×销售量11、一种彩电进价是1050元,按进价的150%标价,商店允许营业员在利润不低于20%的情况下打折出售,问营业员最低可以打几折?512已知(2x﹣1)5=ax5+bx4+cx3+dx2+ex+f,求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.13、设三个互不相等的有理数,既可分别表示为1,a+b,a的形式,又可分别表示为0,a/b,b的形式,求a2014+b2013的值。14、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在点P,使点P到点A、点B之和为5?若存在,请求出x的值;若不存在,说明理由.6(2)当点P以每分钟1个单位长度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左移动,问几分钟时点P到点A,点B的距离相等.15、16、已知a、b、c均为整数,且/a-b/+/c-a/=1,求/c-a/+/a-b/+/b-c/的值。717、如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=10,BC=3求AD的长。1819、(1)当x为何值时,丨x-2丨有最小值?最小值是多少?(2)当x为何值时,3-丨x-4丨有最大值?最大值是多少(3)化简代数式丨x+2丨+丨x-4丨,当x取何值时,原式有最小值,是多少?第五章相交线与平行线第1题8如图,已知直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的平分线,射线OE、OF在同一条直线上吗?为什么?解:射线OE、OF在同一条直线上。理由如下:∵OE、OF分别是∠AOC、∠BOD的平分线∴∠AOE=∠AOC,∠DOF=∠BOD又∵∠AOD=∠BOC(对顶角相等)∴∠AOE+∠AOD+∠DOF=×360°=180°∴射线OE、OF在同一条直线上。第2题如图,AB⊥DC,GF⊥AB,D、F为垂足.G在BC上,∠1=∠2.请判断DE与BC的位置关系并说明理由.解:DE∥BC.理由如下:∵AB⊥DC,GF⊥AB∴∠BFG=∠BDC=90°∴CD∥GF∴∠2=∠GCD∵∠1=∠2∴∠GCD=∠1∴DE∥BC第3题如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出∠OBA;若不存在,说明理由.解:(1)∵CB∥OA,∠C=∠OAB=100°∴∠COA=180°-100°=80°又∵E、F在CB上,∠FOB=∠AOB,OE平分∠COF∴∠EOB=∠COA=×80°=40°(2)不变。∵CB∥OA∴∠CBO=∠BOA又∵∠FOB=∠AOB∴∠FOB=∠OBC而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC∴∠OBC:∠OFC=1:2.(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:∵∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°且∠OEC=∠OBA,∠C=∠OAB=100°∴∠COE=∠BOA又∵∠FOB=∠AOB,OE平分∠COF∴∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°所以∠OEC=∠OBA=60°第4题如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.9解:∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴BD∥FE∴∠3=∠ADE∵∠3=∠B,∴∠B=∠ADE∴DE∥BC,∴∠AED=∠ACB.第5题将直角梯形ABCD平移得到梯形EFGH,若HG=10,MC=2,MG=4,求图中阴影部分的面积.解:∵S阴=S梯ABCD-S梯EFMD,而S梯ABCD=S梯EFGH∴S阴=S梯EFMD=S梯EFMD=S梯DMGH∵HG=10,MC=2,MG=4,∴S阴=12×(8+10)×4=36.第6题如图,长方形ABCD,E为AB上的一点,把三角形CEB沿CE对折,使边EB落在直线GE上,设GE交DC于点F,若∠EFD=70°,求∠BCE的度数.解:∵四边形ABCD是长方形,∴AB∥CD,∠B=90°,∴∠BEF=∠DFE=70°,根据折叠的性质知:∠BEC=∠FEC=35°,则∠BCE=90°-∠BEC=55°.第7题如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)解:(1)∵AB∥CD(2)∵∠BCD=n°,∠EDC=40°∴∠BAD=∠ADC=80°∴∠1=180°-40°-n°=140°-n°∵DE平分∠ADC∴∠2=140°-n°∴∠EDC=∠ADC=80°=40°∵AB∥CD∴∠ABC=∠BCD=n°∵BE平分∠ABC∴∠EBC=n°∴∠E=180°-n°-(140°-n°)=40°+n°第8题8、如图,一条公路修道湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次10拐弯之前的道路平行,则∠C的度数是多少?解:过点B作BD∥AE∵AE∥CF∴AE∥BD∥CF∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°∴∠2=30°∴∠C=180°-∠C=180°-30°=15第9题如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF.解:过C点作CG∥AB,过点D作DH∥AB,则CG∥DH∥AB∵∠B=25°∴∠BCG=25°∵∠BCD=45°∴∠GCD=20°∵CG∥HD∴∠CDH=20°∵∠CDE=30°∴∠HDE=10°∴∠HDE=∠E=10°∴DH∥EF∴DH∥AB∴AB∥EF第10题第11题11直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论图1解:(1)∠BAD+∠DEF=∠ADE.理由如下(如图1):∵AB∥CD,∴∠BAD=∠ADC,∵l1∥l2,∴CD∥EF,∴∠DEF=∠CDE,故∠BAD+∠DEF=∠ADC+∠CDE.即∠BAD+DEF=∠ADE;(2)有两种情况:①当点D在BF的延长线上运动时(如图2),∠BAD=∠ADE+∠DEF;②当点D在FB的延长线上运动时(如图3),∠DEF=∠ADE+∠BAD.第12题如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).解:(1)①∠AED=70°②∠AED=80°③猜想:∠AED=∠EAB+∠EDC证明:过点E作EF//AB,则∠AEF=∠EAB,∠DEF=∠EDC∴∠AEF+∠DEF==∠EAB+∠EDC即∠AED=∠EAB+∠EDC(2)根据题意得:点P在区域①时,∠EPF=360°-(∠PEB+∠PFC);点P在区域②时点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB-∠PFC;点P在区域④时,∠EPF=∠PFC-∠PEB.第13题1214、如图,AB∥CD,P为定点,E、F分别是AB、CD上的动点.(1)求证:∠P=∠BEP+∠PFD;(2)如图2,若M为CD上一点,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PN
本文标题:初一数学经典题集
链接地址:https://www.777doc.com/doc-3145534 .html