您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修2空间几何典型例题及讲解
1数学必修2第一章一、学习目标:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。这部分知识主要考查学生的空间想象能力与计算求解能力。1.多面体棱柱、棱锥、棱台2.旋转体圆柱、圆锥、圆台、球3.三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4.直观图水平放置的平面图形的直观图的斜二测画法4.多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体积(V)棱柱棱柱直截面周长×lS侧+2S底S底·h=S直截面·h直棱柱chS底·h棱锥棱锥各侧面面积之和S侧+S底31S底·h正棱锥21ch′棱台棱台各侧面面积之和S侧+S上底+S下底31h(S上底+S下底+下底上底SS)正棱台21(c+c′)h′表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l表示侧棱长。5.旋转体的面积和体积公式2名称圆柱圆锥圆台球S侧2πrlπrlπ(r1+r2)lS全2πr(l+r)πr(l+r)π(r1+r2)l+π(r21+r22)4πR2Vπr2h(即πr2l)31πr2h31πh(r21+r1r2+r22)34πR3表中l、h分别表示母线长、高,r表示圆柱、圆锥与球冠的底面半径,r1、r2分别表示圆台上、下底面的半径,R表示半径。知识点一柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。②两个底面平行且相似,其余各面都是梯形的多面体是棱台。③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。④直角三角形绕其一条边旋转得到的旋转体是圆锥。⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。⑦通过圆锥侧面上一点,有无数条母线。⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可。解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的。因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线。”是错误的,即⑦是不正确的。以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体。所以⑧是错误的。所以只有⑤是正确的。故应选D。解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误。知识点二组合体3例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A格标明“上”,将B格标明“前”等等。解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力。例4.如图所示,为一个封闭的立方体,在它的六个面上标出A,B,C,D,E,F这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A,B,C对面的字母分别是()A.D,E,FB.F,D,EC.E,F,DD.E,D,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析。解答过程:由(1)(2)两个图知,A与B,C,D相邻,结合第(3)个图知,B,C与F共顶点,所以A的对面为F,同理B,C的对面分别为D,E,故选择B。解题后的思考:本题考查推理能力以及空间想象能力。也可先结合图(1)(3)进行判断。4例5.用长和宽分别是3和的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周。解答过程:设圆柱底面圆的半径为r,由题意可知矩形长为底面圆的周长时,r23,解得23r。矩形宽为底面圆的周长时,r2,解得21r。故圆柱的底面半径为23或21。解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以3作为底面周长,而忽视了它也可作为母线这种情况。知识点四旋转体中的有关计算例6.一个圆台的母线长cm12,两底面面积分别为24cm和225cm,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长。思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解。解答过程:(1)作OAHA1242rr5252RR3AH153312221HA(2)11OVA与OVA相似AOOAVAVA11120VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题。例7.已知球的两个平行截面的面积分别为5和8,且距离为3,求这个球的半径。思路分析:两截面的相互位置可能出现两种情况,一种是在球心O的同侧,另一种是5在球心O的异侧。解答过程:(1)当两截面在球心O的同侧时,如图所示,设这两个截面的半径分别为21,rr,球心O到截面的距离分别为21,dd,球的半径为R。8,5,8,522212221rrrr。又222221212drdrR,321222221rrdd,即3))((2121dddd。又321dd,,1,32121dddd解得.1,221dd又,02d这种情况不成立。(2)当两截面在球心O的异侧时,321dd,由上述解法可知3))((2121dddd,,1,32121dddd解得.1,221dd3452121drR。综上所述,这个球的半径为3。解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论。知识点五画几何体的三视图例8.画出如图所示的三棱柱的三视图。思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形。解答过程:6解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别。知识点六三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状。思路分析:三视图是从三个不同的方向看同一物体得到的三个视图。正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽。而俯视图和正视图共同反映物体的长相等。侧视图和俯视图共同反映物体的宽相等。据此就不难得出该几何体的形状。解答过程:(1)圆台;(2)正四棱锥;(3)螺帽。解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图。七、直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a的正三角形ABC的斜二测水平直观图,那么△A′B′C′的面积为_________。7思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解。解答过程:如图甲、乙所示的实际图与直观图。aOCCOaABBA4321,。在图乙中作C′D′⊥A′B′于D′,则aCODC8622。所以2CBAa166a86a21DCBA21S。故填2166a。解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解。本题旨在考查同学们对直观图画法的掌握情况。例11.如图所示,正方形O′A′B′C′的边长为cm1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________。思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA且BC=OA,易知OABC为平行四边形。在上图中,易求O′B′=2,所以OB=22。又OA=1,所以在Rt△BOA中,31)22(22AB。故原图形的周长是)cm(8)13(2,应填cm8。解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则。例12:已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下面底中心)8的上、下底面边长分别是2cm与4cm,侧棱长是6cm,试求该三棱台的体积。思路分析:利用棱台的体积计算公式,求出棱台的高,上、下底面的面积,代入公式即可。解答过程:如图所示,O、O是上、下底面的中心,连结OO、BO、OB,在平面BOBO内作OBEB于E。CBA是边长为2的等边三角形,O是中心,33223232BO,同理334OB,则332BOOBBE。在EBBRt中,6BB,332BE,342EB,即棱台高为342cm。所以三棱台的体积为31474431643443164334231棱台V(cm3)。解题后的思考:将求体积的立体问题转化为平面问题求解,是立体几何中的常用方法。例13:一个球内有相距9cm的两个平行截面,它们的面积分别为49cm2和400cm2,求球的表面积和体积。思路分析:求球的表面积和体积关键是求出球的半径,可考虑球的轴截面。解答过程:(1)当截面在球心的同侧时,如图所示为球的轴截面。由球的截面性质,知21//BOAO,且1O、2O分别为两截面圆的圆心,则11AOOO,22BOOO。设球的半径为R。4922BO,72BO。同理,40021AO,201AO。9设xOO1,则92xOO。在AOORt1中,22220xR,在BOORt2中,22279xR,22229720xx,解得15x。22222520xR,25R。250042RS球(cm2),362500343RV球(cm3),球的表面积为2500cm2,体积为362500cm3。(2)当截面位于球心O的两侧时,如图所示为球的轴截面。由球的截面性质,知BOAO21//,且1O、2O分别为两截面圆的圆心,则11AOOO,BOOO22。设球的半径为R。4922BO,72BO。同理,40021AO,201AO。设xOO1,则xOO92。在AOORt1中,40022xR。在BOORt2中,49922xR,49940022xx,解得15x,不合题意,舍去。综上所述,球的表面积为2500cm2,体积为362500cm3。解题后的思考:解题时要注意,球的截面可能位于球心的同侧,也可能位于球心的两侧。例14:求半径为R的球内接正方体的表面积。思路分析:正方体内接球时,球
本文标题:高中数学必修2空间几何典型例题及讲解
链接地址:https://www.777doc.com/doc-3191436 .html