您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 57离散型随机变量的均值与方差
离散型随机变量的均值与方差考点梳理离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn(1)均值称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称D(X)=i=1nxi-EX2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根DX为随机变量X的标准差.助学微博在记忆D(aX+b)=a2D(X)时要注意:(1)D(aX+b)≠aD(X)+b,(2)D(aX+b)≠aD(X).两个防范(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p);(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p);(3)若X服从超几何分布,则E(X)=n.三种分布六条性质(1)E(C)=C(C为常数);(2)E(aX+b)=aE(X)+b(a,b为常数);(3)E(X1+X2)=EX1+EX2;(4)如果X1,X2相互独立,则E(X1·X2)=E(X1)E(X2);(5)D(X)=E(X2)-(E(X))2;(6)D(aX+b)=a2·D(X)(a,b为常数).MN1.(日照二模)已知随机变量ξ的分布列为:P(ξ=k)=13,k=1,2,3,则D(3ξ+5)等于().A.6B.9C.3D.42.已知X的分布列为X-101P121316设Y=2X+3,则E(Y)的值为().A.73B.4C.-1D.13.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则().A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=0.32D.n=7,p=0.454.(2017·成都五校联考)从一批含有13件正品,2件次品的产品中不放回地抽3次,每次抽取1件,设抽取的次品数为ξ,则E(5ξ+1)=().A.2B.1C.3D.45.(2016·南昌调研)有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X表示取到次品的次数,则D(X)=________.考点自测AAAC9/1612345【例1】►新课标全国)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.解(1)当日需求量n≥16时,利润y=80.当日需求量n16时,利润y=10n-80.所以y关于n的函数解析式为y=10n-80,n16,80,n≥16(n∈N).(2)①X可能的取值为60,70,80,并且P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X607080P0.10.20.7X的数学期望为E(X)=60×0.1+70×0.2+80×0.7=76.X的方差为D(X)=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.[审题视点](1)根据日需求量分类求出函数解析式.(2)①根据当天的需求量,写出相应的利润,列出分布列,求出数学期望和方差,②比较两种情况的数学期望或方差即可.考向一离散型随机变量的均值和方差②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y55657585P0.10.20.160.54Y的数学期望为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y的方差为D(Y)=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,D(X)D(Y),即购进16枝玫瑰花时利润波动相对较小.另外,虽然E(X)E(Y),但两者相差不大.故花店一天应购进16枝玫瑰花.[审题视点](1)根据日需求量分类求出函数解析式.(2)①根据当天的需求量,写出相应的利润,列出分布列,求出数学期望和方差,②比较两种情况的数学期望或方差即可.考向一离散型随机变量的均值和方差[方法锦囊](1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的均值与方差公式计算,则更为简单.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y55657585P0.10.20.160.54Y的数学期望为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,E(X)E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.[审题视点](1)根据日需求量分类求出函数解析式.(2)①根据当天的需求量,写出相应的利润,列出分布列,求出数学期望和方差,②比较两种情况的数学期望或方差即可.考向一离散型随机变量的均值和方差[方法锦囊](1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的均值与方差公式计算,则更为简单.【训练1】A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1和B12313A2和B22535A3和B32535现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y(1)求X,Y的分布列;(2)求E(X),E(Y).解(1)X,Y的可能取值分别为3,2,1,0.P(X=3)=23×25×25=875,P(X=2)=23×25×35+13×25×25+23×35×25=2875,[审题视点](1)根据日需求量分类求出函数解析式.(2)①根据当天的需求量,写出相应的利润,列出分布列,求出数学期望和方差,②比较两种情况的数学期望或方差即可.考向一离散型随机变量的均值和方差[方法锦囊](1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的均值与方差公式计算,则更为简单.P(X=1)=23×35×35+13×25×35+13×35×25=25,P(X=0)=13×35×35=325;根据题意X+Y=3,所以P(Y=0)=P(X=3)=875,P(Y=1)=P(X=2)=2875,P(Y=2)=P(X=1)=25,P(Y=3)=P(X=0)=325.X的分布列为X0123P325252875875Y的分布列为Y3210P325252875875(2)E(X)=3×875+2×2875+1×25+0×325=2215;因为X+Y=3,所以E(Y)=3-E(X)=2315.[审题视点](1)根据日需求量分类求出函数解析式.(2)①根据当天的需求量,写出相应的利润,列出分布列,求出数学期望和方差,②比较两种情况的数学期望或方差即可.考向一离散型随机变量的均值和方差[方法锦囊](1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的均值与方差公式计算,则更为简单.【例2】►设随机变量X具有分布P(X=k)=15,k=1,2,3,4,5,求E(X+2)2,D(2X-1),DX-1.解∵E(X)=1×15+2×15+3×15+4×15+5×15=155=3.E(X2)=1×15+22×15+32×15+42×15+52×15=11.D(X)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=15(4+1+0+1+4)=2.∴E(X+2)2=E(X2+4X+4)=E(X2)+4E(X)+4=11+12+4=27.D(2X-1)=4D(X)=8,DX-1=DX=2.[审题视点]利用期望与方差的性质求解.考向二均值与方差性质的应用[方法锦囊]若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.【训练2】A,B两个投资项目的利润分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为:X15%10%P0.80.2X22%8%12%P0.20.50.3(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2);(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.[审题视点]利用期望与方差的性质求解.考向二均值与方差性质的应用[方法锦囊]若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.解(1)由题设可知Y1和Y2的分布列为Y1510P0.80.2E(Y1)=5×0.8+10×0.2=6,D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4,E(Y2)=2×0.2+8×0.5+12×0.3=8,D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.(2)f(x)=Dx100Y1+D100-x100Y2=x1002D(Y1)+100-x1002D(Y2)=41002[x2+3(100-x)2]=41002(4x2-600x+3×1002).当x=6002×4=75时,f(x)=3为最小值.Y22812P0.20.50.3【例3】►福建)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲乙首次出现故障时间x(年)0x≤11x≤2x20x≤2x2轿车数量(辆)2345545每辆利润(万元)1231.82.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A)=2+350=110.(2)依题意得,X1的分布列为X1123P125350910X2的分布列为X21.82.9P110910(3)由(2)得E(X1)=1×125+2×350+3×910=14350=2.8
本文标题:57离散型随机变量的均值与方差
链接地址:https://www.777doc.com/doc-3251129 .html