您好,欢迎访问三七文档
TheValuationofAmericanExchangeOptionswithApplicationtoRealOptionsbyPeterCarr*,CornellUniversityABSTRACTAnAmericanexchangeoptiongivesitsownertherighttoexchangeoneassetforanotheratanytimepriortoexpiration.AmodelforvaluingtheseoptionsisdevelopedusingtheGeske-JohnsonapproachforvaluingAmericanputoptions.Theformulaisshowntogeneralizemuchpreviousworkinoptionpricing.Applicationofthegeneralvaluationformulatothetimingoptionincapitalinvestmenttheoryandotherrealoptionsispresented.*AslightlylongerversionofthispaperappearedasthesecondessayinmyPh.D.dissertation\EssaysonExchangeatUCLA.Iwouldliketothankthefollowingindividualsfortheircommentsandsupport:WarrenBailey,JimBrandon,MichaelBrennan,TomCopeland,DanGalai,BobGeske,MarkGrinblatt,DavidHirshleifer,CraigHolden,EduardoSchwartz,ErikSirri,SheridanTitman,WaltTorous,BrettTrueman,andtheparticipantsoftheUCLA nanceworkshop.Theyarenotrespon-sibleforanyerrors.FinancialsupportwasprovidedbyafellowshipfromtheSocialSciencesandHumanitiesResearchCouncilofCanada,aJohnM.Olinscholarship,andanAllstateDissertationFellowship.I.INTRODUCTIONAnAmericanexchangeoptiongivesitsownertherighttoexchangeoneassetforan-otheratanytimeuptoandincludingexpiration.Margrabe(1978)valuesaEuropeanexchangeoptionwhichgivesitsownertherighttosuchanexchangeonlyatexpira-tion.MargrabealsoprovesthatexerciseofanAmericanexchangeoptionwillonlyoccuratexpirationwhenneitherunderlyingassetpaysdividends.However,whentheassettobereceivedintheexchangepayssu cientlylargedividends,thereisapositiveprobabilitythatanAmericanexchangeoptionwillbeexercisedstrictlypriortoexpiration.ThispositiveprobabilityinducesadditionalvalueforanAmericanexchangeoptionoveritsEuropeancounterpart.ThepurposeofthispaperistodevelopageneralformulaforvaluingAmericanexchangeoptions.TheformulageneralizestheGeske-Johnson(1984)solutionforthevalueofanAmericanputoption.Thegeneralizationessentiallyinvolvesrede ningtheexercisepricetobethepriceofatradedasset.Ifeitherassetinvolvedintheexchangehasconstantvalueovertime,thenanexchangeoptionreducestoanordinarycallorputoption.Consequently,thisgeneralformulaforAmericanexchangeoptionsmaybeusedtovaluestandardcallorputoptionsasspecialcases.Furthermore,thetimingoptioninherentinacapitalinvestmentdecisioncanalsobevalued.ThepapervaluesAmericanexchangeoptionswhenbothunderlyingassetspaydividendscontinuously.Anyassetwhosepayo saccrueovertimemaybeconsideredtoyieldacontinuouspayout(e.g.,acouponbond).Furthermore,anassetmaybehaveasifitpaysdividendsif,forexample,itfurnishesaconvenienceyieldorearnsabelowequilibriumexpectedrateofreturn.Non-tradedrealassetsmayo erabelowequilibriumreturnandmayinvolve exibilitiestoswitchoperatingmodesorexchangeoneassetforanother.Asaresult,thegeneralvaluationformulamay1beusedtovaluerealoptions.Foranalyticaltractability,thedividendsfromtheunderlyingassetsarepresumedtoprovideaconstantyield.Whenthedividendyieldontheassettobereceivedintheexchangeisstrictlypositive,Americanexchangeoptionsmaybeexercisedearly.TheGeske-JohnsonapproachisusedheretovalueanAmericanexchangeoptionbecauseitpossessestwoadvantagesoverothermethods.First,thesolutionmaybedi erentiatedtoa ordcomparativestaticsresults.Second,apolynomialapproxima-tiontotheexactformulaiscomputationallymoree cientthaneither nitedi erencesorthebinomialmethod(seeGeskeandShastri,1985).Thepaperisorganizedasfollows.Thenextsectionreviewssomeoftherelevantoptionpricingliterature.ThevaluationformulaforanAmericanexchangeoptionisderivedinsectionIII.Thefollowingsectionthenincorporatessomepreviousresultsasspecialcasesofthegeneralsolution.ApplicationofthegeneralvaluationmodeltothetimingoptionininvestmenttheoryandotherrealoptionsisdiscussedinsectionV.The nalsectionconcludesthepaper.II.LITERATUREREVIEWThispaperisconcernedwithvaluingexchangeoptionsondividend-payingassetswhichmayrationallybeexercisedearly.Asanintroduction,thissectionreviewspreviousworkonvaluingEuropeanexchangeoptionsandAmericanputs.Tofocusthediscussion,considertheEuropeanoptiontoexchangeassetDforassetVattimeT.AssetDisreferredtoasthedeliveryasset,andassetVtheoptionedasset.Thepayo tothisEuropeanoptionatTismax(0;VT DT)whereVTandDTaretheunderlyingassets’terminalprices.SupposethattheunderlyingassetpricesVtand2DtpriortoexpirationfollowageometricBrownianmotionoftheform:dVtVt=( v v)dt+ vdZvt(1)dDtDt=( d d)dt+ ddZdtcovdVtVt;dDtDt!= vddt;t2[0;T];where vand daretheexpectedratesofreturnonthetwoassets, vand darethecorrespondingdividendyields, 2vand 2daretherespectivevariancerates,anddZvtanddZdtareincrementsofstandardWienerprocessesattimet.Theratesofpricechanges,dVtVtanddDtDt,canbecorrelated,withthecovariancerategivenby vd.Theparameters v, d, v, d,and vdareassumedtobenonnegativeconstants,althoughtheycanbeallowedtobedeterministicfunctionsoftime.Undercertainassumptions,McDonaldandSiegel(1985)showthatthevalueofaEuropeanexchangeoptiononsuchdividend-payingassetsisgivenby:e(V;D; )=Ve v N1(d1(Pe ; 2 )) De d N1(d2(Pe ; 2 ));(2)where:N1(d) Rd0e z2=2p2 dzisthestandardunivariatenormaldistributionfunction,d1(Pe ; 2 ) ln(Pe )+ 2 =2p 2 ,P VDis
本文标题:The Valuation of American Exchange Options with Ap
链接地址:https://www.777doc.com/doc-3347409 .html