您好,欢迎访问三七文档
1、Content-basedImageRetrieval:ColorandEdgesRobertS.GrayDepartmentofComputerScienceDartmouthCollegeHanover,NH03755E-mail:robert.s.gray@dartmouth.eduAbstractOneofthetoolsthatwillbeessentialforfutureelectronicpublishingisapowerfulimageretrievalsystem.Theauthorshouldbeabletosearchanimagedatabaseforimagesthatconveythedesiredinformationormood;areadershouldbeabletosearchacorpusofpublishedworkforimagesthatarerelevanttohisorherneeds.Mostcommercialimageretrievalsystemsassociatekeywordsortextwitheachimagean。
2、drequiretheusertoenterakeywordortextualdescriptionofthedesiredimage.Thistext-basedapproachhasnumerousdrawbacks{associatingkeywordsortextwitheachimageisatedioustask;someimagefeaturesmaynotbementionedinthetextualdescription;somefeaturesare\nearlyimpossibletodescribewithtext;andsomefeaturescanbedescribedinwidelydi erentways[Na93a].Inane orttoovercometheseproblemsandimproveretrievalperformance,researchershavefocusedmoreandmoreoncontent-basedimageretrievalinwhichretrievalisaccomplishedbycomparingimag。
3、efeaturesdirectlyratherthantextualdescriptionsoftheimagefeatures.Featuresthatarecommonlyusedincontent-basedretrievalincludecolor,shape,textureandedges.Inthispaperwedescribeasimplecontent-basedsystemthatretrievescolorimagesonthebasisoftheircolordistributionsandedgecharacteristics.Thesystemusestworetrievaltechniquesthathavebeendescribedintheliterature{i.e.histogramintersectiontocomparecolordistributionsandsketchcomparisontocompareedgecharacteristics.Theperformanceofthesystemisevaluatedandvariousex。
4、tensionstotheexistingtechniquesareproposed.1IntroductionOneofthetoolsthatwillbeessentialforfutureelectronicpublishingisapowerfulimageretrievalsystem.Theauthorshouldbeabletosearchanimagedatabaseforimagesthatconveythedesiredinformationormood;thereadershouldbeabletosearchacorpusofpublishedworkforimagesthatarerelevanttohisorherneeds.Mostcommercialimageretrievalsystemsassociatekeywordsortextwitheachimageinthecorpusandrequiretheusertoenterakeywordortextualdescriptionofthedesiredimage.Standardtextretri。
5、evaltechniquesarethenusedtoidentifytherelevantimages.Unfortunatelythistext-basedapproachtoimageretrievalhasnumerousdrawbacks[Na93a].Associatingkeywordsortextwitheachimageisatediousandtime-consumingtasksinceitmustbedonemanuallyoratbestsemi-automatically;imageprocessingtechnologyisnotadvancedenoughtoallowtheautomaticconstructionoftextualimagedescriptionsexceptinwell-de nedandtightlyfocuseddomains.Someimagefeaturesmaynotbementionedinthetextualdescriptionduetodesigndecisionorindexererror;theseimagef。
6、eaturesdonotexistfromthestandpointoftheretrievalsystemandanyquerythatmentionsthemwillfail.Somefeaturesare\nearlyimpossibletodescribewithtext[Na93a];forexamplemanytexturesandshapesdefyeasydescription.Finallydi erentindexers{oreventhesameindexer{maydescribethesamefeaturewithdi erenttermsordi erentfeatureswiththesameterm;thesearethestandardtextretrievalproblemsofsynonymyandpolysemy.Inane orttoovercometheproblemsofthetext-basedapproachandimproveretrievalperformance,re-searchershavefocusedmoreandmore。
7、oncontent-basedimageretrievalinwhichretrievalisaccomplishedbycomparingimagefeaturesdirectlyratherthantextualdescriptionsoftheimagefeatures.Itishopedthatcontent-basedtechniquescanprovidethebasisforpowerful\querybyexampleretrievalsystems.Forexampletheusermightprovideasamplepictureandrequestsimilarpictures,apictureofanobjectandrequestpicturesthatcontaintheobject,asetofcolorsandrequestimagesthatcontainthosecolors,andsoon.Featuresthatarecommonlyusedincontent-basedimageretrievalincludecolor,shape,text。
8、ureandedges.1PartiallysupportedbyAFOSRcontractF49620-93-1-0266andAFOSR/DARPA89-05361ImagesColorextractionQueryprocessingformulationGUIforqueryedgemapsEdgeextractionHistogramsandFigure1:Thearchitectureoftheimageretrievalsystem{themainmodulesareedgeextraction,colorextraction,queryprocessinganduserinterface.Inthispaperwedescribeasimplecontent-basedsystemthatretrievescolorimagesonthebasisoftheircolordistributionsandedgecharacteristics.Thesystemisfullyautomaticasnomanualinterventionisrequiredduringth。
9、eindexingprocess.Fullautomation{alongwithe ectiveretrievalperformance{istheprimarygoalofthesystemsinceamanualorsemi-automaticindexingprocessiserror-proneandtime-intensive.Thesystemdoesnotdevelopanynovelretrievaltechniquesbutinsteadusesexistingtechniquesthathavebeendescribedintheliterature{i.ehistogramintersection[SB91,Swa93]isusedtocomparecolordistributionsandsketchcomparison[HK92,KKOH92]isusedtocompareedgecharacteristics.Itishopedthatthesystemwillhighlightpotentialavenuesofresearchandserveasate。
10、stbedforfuturework.Tothisend,theperformanceofthesystemisevaluatedandvariousextensionstotheexistingretrievaltechniquesareproposed.Thenextsectiondescribestheimplementationofthesystem.Theremainingsectionsdiscusstheweaknessesofthecurrentimplementationandmethodsforaddressingtheseweaknesses.2ImplementationThesystemisimplementedasfourmodules{edgeextraction,colorextraction,queryprocessinganduserinterface.Thecolorandedgeextractionmodulesconstructasetofhistogramsandanedgemapforeachimage.Nomanualinterventio。
本文标题:Content-based image retrieval color and edges
链接地址:https://www.777doc.com/doc-3396670 .html