您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 往来文书 > 高三数学(理科)综合内切球和外接球问题(附习题)
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点。一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________.解析:球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为____43__________.2、求长方体的外接球的有关问题例3(2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.解析:体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(C).A.16B.20C.24D.32解析:长、宽、高分别为2,2,43.求多面体的外接球的有关问题例5.一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x,高为h,则有263,1,2936,384xxxhh.∴正六棱柱的底面圆的半径12r,球心到底面的距离32d.∴外接球的半径221Rrd.43V球.小结本题是运用公式222Rrd求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______9________.解把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.则有222223339R.∴294R.故表面积249SR.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为abc、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2222Rabc.出现“墙角”结构利用补形知识,联系长方体。例6.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为(A)A.3B.4C.33D.6解析:联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体满足条件,由此可求得正方体的棱长为1,体对角线为3,从而外接球的直径也为3例7(2006年山东高考题)在等腰梯形ABCD中,AB=2DC=2,0DAB=60,E为AB的中点,将ADE与BEC分布沿ED、EC向上折起,使AB、重合于点P,则三棱锥P-DCE的外接球的体积为(C).A.4327B.62C.68D.624解析:(如图3)AE=EB=BC=DC=DE=CE=1AD,即三棱锥P-DCE为正四面体,至此,这与例6就完全相同了ABEDCDCEP图3例8(2008年浙江高考题)已知球O的面上四点A、B、C、D,DAABC平面,ABBC,DA=AB=BC=3,则球O的体积等于.解析:DA=AB=BC=3,则此长方体为正方体,所以CD长即为外接球的直径,利用直角三角形解出CD=3.故球O的体积等于92.(如图4)2、构造长方体例9.已知点A、B、C、D在同一个球面上,BBCDA平面,BCDC,若6,AC=213,AD=8AB,则球的体积是.解析:构造下面的长方体,于是AD为球的直径(如图5)DACBO图4ACBDO图5三.寻求轴截面圆半径法例4正四棱锥SABCD的底面边长和各侧棱长都为2,点SABCD、、、、都在同一球面上,则此球的体积为.解球心O必在1SO所在的直线上.∴ASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC中,由22SASCAC,,得222SASCAC.∴ASCAC是以为斜边的Rt.∴12AC是外接圆的半径,也是外接球的半径.故43V球.五.确定球心位置法例5在矩形ABCD中,4,3ABBC,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为(C)A.12512B.1259C.1256D.1253解点O到四面体的四个顶点ABCD、、、的距离相等,即点O为四面体的外接球的球心,52ROA.故3412536VR球.【例题】:已知三棱锥的四个顶点都在球的球面上,且,,,,求球的体积。CDABSO1图3CAODB图4解:所以知所以取斜边的中点,即为该四面体的外接球的球心所以该外接球的体积为1.(陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123答案B2.直三棱柱111ABCABC的各顶点都在同一球面上,若12ABACAA,120BAC,则此球的表面积等于。解:在ABC中2ABAC,120BAC,可得23BC,由正弦定理,可得ABC外接圆半径r=2,设此圆圆心为O,球心为O,在RTOBO中,易得球半径5R,故此球的表面积为2420R.3.正三棱柱111ABCABC内接于半径为2的球,若,AB两点的球面距离为,则正三棱柱的体积为.答案84.表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为A.23B.13C.23D.223答案A【解析】此正八面体是每个面的边长均为a的正三角形,所以由238234a知,1a,则此球的直径为2,故选A。5.已知正方体外接球的体积是332,那么正方体的棱长等于()A.22B.332C.324D.334答案D6.(2006山东卷)正方体的内切球与其外接球的体积之比为()A.1∶3B.1∶3C.1∶33D.1∶9答案C7.(2008海南、宁夏理科)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.答案348.(2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.答案14π9.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2cm的球面上。如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.答案24210.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥PABCDEF,则此正六棱锥的侧面积是________.答案6711.(辽宁省抚顺一中2009届高三数学上学期第一次月考)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.答案212.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为()ABCPDEFA.3B.2C.316D.以上都不对答案C13.(吉林省吉林市2008届上期末)设正方体的棱长为233,则它的外接球的表面积为()A.38B.2πC.4πD.34答案C1.(2012新课标理)已知三棱锥SABC的所有顶点都在球O的求面上,ABC是边长为1的正三角形,SC为球O的直径,且2SC;则此棱锥的体积为()A.26B.36C.23D.2225.(2012辽宁文)已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23正方形.若PA=26,则△OAB的面积为______________.
本文标题:高三数学(理科)综合内切球和外接球问题(附习题)
链接地址:https://www.777doc.com/doc-3638785 .html