您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2012届中考数学复习课件:专题五 动手操作与方案设计问题
欢迎访问大家论坛---中考,.“动手操作”类题,多指对某种图形按照要求完成某些操作,进而对结果进行探究,直至解决的一类题型.“方案设计”是指根据要求,构造某种问题的具体解决方案或者对问题给出的若干种解决方法进行比较的一类题型.2.实际操作型问题是让学生在实际操作的基础上设计问题,主要有:(1)裁剪、折叠、拼图等动手操作问题,往往与面积、对称性相联系;(2)与画图、测量、猜想、证明等有关的探究性问题.3.方案设计问题的题型主要包括:(1)根据实际问题拼接或分割图形;(2)利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.类型一动手操作题如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()A.2+10B.2+210C.12D.18【点拨】动手操作法.【答案】B提示:利用勾股定理即可得出结果.类型二方案设计题为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3∶2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?【点拨】本题综合考查方程和不等式组的实际应用,正确理解题意找出题目的等量和不等量关系是解题的关键.注意求n的整数解时不要漏解.【解答】(1)设篮球的单价为x元,则排球的单价为23x元,依题意得x+23x=80,解得x=48,∴23x=32.即篮球和排球的单价分别是48元和32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36-n)个.由题意得n25,48n+3236-n≤1600,解得25n≤28.而n为整数,所以其取值为26、27、28,对应的36-n的值为10、9、8,故共有三种购买方案.方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.1.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669B.670C.671D.672解析:第n次操作得到3n+1个小正方形,所以3n+1=2011,所以n=670.答案:B2.(1)【操作发现】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD的内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)【解决问题】保持(1)中的条件不变,若DC=2DF,求ADAB的值.(3)【类比探究】保持(1)中的条件不变,若DC=n·DF,求ADAB的值.解:(1)同意.连结EF.则∠EGF=∠D=90°,EG=AE=ED,EF=EF.∴Rt△EGF≌Rt△EDF,∴GF=DF.(2)由(1)知,GF=DF.设DF=x,BC=y,则有GF=x,AD=y.∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x.在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2.∴y=22x,∴ADAB=y2x=2.(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y.∵DC=n·DF,∴DC=AB=BG=nx.∴CF=(n-1)x,BF=BG+GF=(n+1)x.在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2.∴y=2nx,∴ADAB=ynx=2nn.3.君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品.根据题意3(x+2)=4x,解得x=6.∴x+2=8.因此,甲车间每天生产8件A种产品,乙车间每天生产6件B种产品.(2)设青扬公司购买B种产品m件,则购买A种产品(80-m)件.15000200(80-m)+180m≤15080,解得46≤m50.∵m为整数,∴m为46或47或48或49.又∵乙车间8天只能生产48件,∴m为46或47或48.故共有三种购买方案:方案1:购买A种产品32件,B种产品48件;方案2:购买A种产品33件,B种产品47件;方案3:购买A种产品34件,B种产品46件.4.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.解:(1)画树状图如下:或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种,所以积为0的概率为P=412=13.(2)不公平.因为由图(表)知,积为奇数的有4种,积为偶数的有8种,所以积为奇数的概率为P1=412=13;积为偶数的概率为P2=812=23.因为13≠23,所以该游戏不公平.游戏规则可修改如下:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.(只要正确即可)
本文标题:2012届中考数学复习课件:专题五 动手操作与方案设计问题
链接地址:https://www.777doc.com/doc-3650096 .html