您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 70函数的极值与导数
4.2函数的极值与导数上页下页铃结束返回首页aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0复习:函数单调性与导数关系如果在某个区间内恒有,则为常数.0)(xf)(xf设函数y=f(x)在某个区间内可导,f(x)增加f(x)减少上页下页铃结束返回首页巩固:定义域R,f′(x)=x2-x=x(x-1)令x(x-1)0,得x0或x1,则f(x)单增区间(-∞,0),(1,+∞)令x(x-1)0,得0x1,f(x)单减区(0,2).注意:求单调区间:1:首先注意定义域,2:其次区间不能用U连接(第一步)解:(第二步)(第三步)单调区间27x21-x31f(x)23上页下页铃结束返回首页yxOabyf(x)x1f(x1)x2f(x2)x3f(x3)x4f(x4)在x1、x3处函数值f(x1)、f(x3)与x1、x3左右近旁各点处的函数值相比,有什么特点?f(x2)、f(x4)比x2、x4左右近旁各点处的函数值相比呢?观察图像:上页下页铃结束返回首页函数的极值定义设函数f(x)在点x0附近有定义,•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);oxyoxy0x0x◆函数的极大值与极小值统称为极值.(极值即峰谷处的函数值值)使函数取得极值的点x0称为极值点上页下页铃结束返回首页(1)函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义域内可能有多个极大值或极小值(2)极大值不一定比极小值大(3)可导函数f(x),点是极值点的必要条件是在该点的导数为0或者不存在例:y=x2上页下页铃结束返回首页•1.理解极值概念时需注意的几点•(1)函数的极值是一个局部性的概念,是仅对某一点的左右两侧附近的点而言的.•(2)极值点是函数定义域内的点,而函数定义域的端点绝不是函数的极值点.•(3)若f(x)在[a,b]内有极值,那么f(x)在[a,b]内绝不是单调函数,即在定义域上单调的函数没有极值.总结上页下页铃结束返回首页•(4)极大值与极小值没有必然的大小关系.一个函数在其定义域内可以有许多个极小值和极大值,在某一点的极小值可能大于另一点的极大值.(如图(1))•(5)若函数f(x)在[a,b]上有极值,它的极值点的分布是有规律的(如图(2)所示),相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.上页下页铃结束返回首页练习:下图是导函数的图象,试找出函数的极值点,并指出哪些是极大值点,哪些是极小值点.)(xfy)(xfyabxyx1Ox2x3x4x5x6)(xfy上页下页铃结束返回首页yxO探究:极值点处导数值(即切线斜率)有何特点?结论:极值点处,如果有切线,切线水平即:k切=f(x)=0abyf(x)x1x2x3f(x1)=0f(x2)=0f(x3)=0思考;若f(x0)=0,则x0是否为极值点?结论:导数为0的点不一定是极值点,但都叫驻点。xyO分析yx3是极值点吗?)(处,在,得由0,00'03)(',)(23xfxxxfxxf上页下页铃结束返回首页进一步探究:极值点两侧函数图像单调性有何特点?极大值极小值即:极值点两侧单调性互异上页下页铃结束返回首页f(x)0yxOx1abyf(x)极大值点两侧极小值点两侧f(x)0f(x)0f(x)0探究:极值点两侧导数正负符号有何规律?x2xXx2x2Xx2f(x)f(x)xXx1x1Xx1f(x)f(x)增f(x)0f(x)=0f(x)0极大值减f(x)0f(x)=0增减极小值f(x)0注意:(1)f(x0)=0,x0不一定是极值点(2)只有f(x0)=0且x0两侧单调性不同,x0才是极值点.(3)求极值点,可以先求f(x0)=0的点,再列表判断单调性结论:极值点处,f(x)=0上页下页铃结束返回首页因为所以例1求函数的极值.4431)(3xxxf解:,4431)(3xxxf.4)(2xxf令解得或,0)(xf,2x.2x当,即,或;当,即.0)(xf0)(xf2x2x22x当x变化时,f(x)的变化情况如下表:x(–∞,–2)–2(–2,2)2(2,+∞)00f(x)–)(xf++单调递增单调递减单调递增3/283/4所以,当x=–2时,f(x)有极大值28/3;当x=2时,f(x)有极小值–4/3.上页下页铃结束返回首页变式求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,112)()1(xxf令解得列表:,0)(xf.121xx0f(x))(xf+单调递增单调递减–)121,(),121(1212449所以,当时,f(x)有极小值121x.2449)121(f上页下页铃结束返回首页求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,0273)()2(2xxf令解得列表:.3,321xxx(–∞,–3)–3(–3,3)3(3,+∞)00f(x)–)(xf++单调递增单调递减单调递增5454所以,当x=–3时,f(x)有极大值54;当x=3时,f(x)有极小值–54.上页下页铃结束返回首页求下列函数的极值:;27)()2(;26)()1(32xxxfxxxf.3)()4(;126)()3(33xxxfxxxf解:,0312)()3(2xxf令解得.2,221xx所以,当x=–2时,f(x)有极小值–10;当x=2时,f(x)有极大值22.,033)()4(2xxf令解得.1,121xx所以,当x=–1时,f(x)有极小值–2;当x=1时,f(x)有极大值2.上页下页铃结束返回首页小结:极值定义关键:①可导函数y=f(x)在极值点处的f’(x)=0或者不存在。②极值点左右两边的导数必须异号。3个步骤:①确定定义域②求f’(x)=0的根③并列成表格④判断极值:用方程f’(x)=0的根x0,x1,...,顺次将函数的定义域分成若干个开区间,如果xn左侧紧邻区间导函数f'(x)都小于0,右侧紧邻区间导函数f'(x)都大于0,则f(x)在xn左边减少,右边增加,xn是极小值点,f(xn)是极小值。如果xn左侧紧邻区间导函数f'(x)都大于0,右侧紧邻区间导函数f'(x)都小于0,则f(x)在xn左边增加,右边减少,xn是极大值点,f(xn)是极大值。上页下页铃结束返回首页•例2求函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值.•[分析]首先求f(x)在(-1,2)内的极值.然后将f(x)的各极值与f(-1),f(2)比较,其中最大的一个是最大值,最小的一个是最小值.•[解析]f′(x)=3x2-4x.令f′(x)=0,有3x2-4x=0.解得x=0,43.当x变化时,f′(x),f(x)的变化情况如下表:上页下页铃结束返回首页•故f(x)最大值=1,f(x)最小值=-2.•[点评]利用求最值的步骤求解.•1、函数最大值及最小值点必在下面各种点之中:导数等于0的点、导数不存在的点或区间的端点.•2、函数在区间[a,b]上连续是f(x)在[a,b]上存在最值的充分而非必要条件.上页下页铃结束返回首页变式:求函数f(x)=x2-4x+6在区间[1,5]内的最大值和最小值上页下页铃结束返回首页故函数f(x)在区间[1,5]内的极小值为3,最大值为11,最小值为2法二、解、f’(x)=2x-4令f’(x)=0,即2x-4=0,得x=2x1(1,2)2(2,5)50y-+3112'y上页下页铃结束返回首页•例3已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1,•(1)试求常数a、b、c的值;•(2)试判断x=±1时函数取得极小值还是极大值,并说明理由.•[解析](1)由f′(-1)=f′(1)=0,得3a+2b+c=0,3a-2b+c=0.•又f(1)=-1,∴a+b+c=-1.∴a=12,b=0,c=-32.上页下页铃结束返回首页(2)f(x)=12x3-32x,∴f′(x)=32x2-32=32(x-1)(x+1).当x-1或x1时,f′(x)0;当-1x1时,f′(x)0,∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.•[点评]若函数f(x)在x0处取得极值,则一定有f′(x0)=0,因此我们可根据极值得到一个方程,来解决参数.上页下页铃结束返回首页注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。思考1.判断下面4个命题,其中是真命题序号为。①f(x0)=0,则f(x0)必为极值;②f(x)=在x=0处取极大值0,③函数的极小值一定小于极大值④函数的极小值(或极大值)不会多于一个。⑤函数的极值即为最值3x上页下页铃结束返回首页1)6()(23xaaxxxf有极大值和极小值,求a范围?思考2解析:f(x)有极大值和极小值f’(x)=0有2实根,0已知函数解得a6或a3上页下页铃结束返回首页练习1:求在时极值。44xx31y3),0(x上页下页铃结束返回首页练习2:若f(x)=ax3+bx2-x在x=1与x=-1处有极值.(1)求a、b的值(2)求f(x)的极值.上页下页铃结束返回首页练习3:设f(x)=ax3+x恰有三个单调区间,试确定实数a的取值范围,并求出这三个单调区间.上页下页铃结束返回首页变式:设a0,(1)证明f(x)=ax+b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a和b的值.[解析](1)证明:f′(x)=a(1+x2)-2x(ax+b)(1+x2)2=-ax2-2bx+a(1+x2)2,令f′(x)=0,即ax2+2bx-a=0.①上页下页铃结束返回首页∵Δ=4b2+4a20,∴方程①有两个不相等的实根,记为x1、x2.不妨设x1x2,则有f′(x)=-ax2-2bx+a(1+x2)2=0,即-a(x-x1)(x-x2)=0.f′(x)、f(x)的变化情况如下表:上页下页铃结束返回首页由上表可见,f(x)取得极大值和极小值的点各有1个.(2)解:由(1)可知f(x1)=ax1+b1+x21=-1,f(x2)=ax2+b1+x22=1⇒-x21-1=ax1+b且1+x22=ax2+b,两式相加,得x22-x21=a(x1+x2)+2b.又x1+x2=-2ba,代入上式,得x22-x21=a-2ba+2b=0,∴x22-x21=0,即(x2-x1)(x2+x1)=0.上页下页铃结束返回首页•而x1x2,∴x1+x2=0.∴b=0.•代入①式,得a(x2-1)=0.•∵a0,∴x=±1.再代入f(x1)或f(x2),得a=2.•∴a=2,b=0.上页下页铃结束返回首页
本文标题:70函数的极值与导数
链接地址:https://www.777doc.com/doc-3747123 .html