您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 最新沪科版八年级数学下册教案
1/87第1课时二次根式的概念1.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解a(a≥0)是一个非负数,并会应用a(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式x+1x-1有意义,则x的取值范围是()A.x≥-1且x≠1B.x≠1C.x≥1且x≠-1D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值2/87【类型一】利用被开方数的非负性求字母的值(1)已知a,b满足2a+8+|b-1|=0,求2a-b的值;(2)已知实数a,b满足a=b-2+2-b+3,求a,b的值.解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可.解:(1)由题意知2a+8=0,b-1=0,得2a=-8,b=1,则2a-b=-9;(2)由题意知b-2≥0,2-b≥0,解得b=2.所以a=0+0+3=3.方法总结:①当几个非负数的和为0时,这几个非负数均为0;②当题目中,同时出现a和-a时(即二次根式下的被开方数互为相反数),则可得a=0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】与二次根式有关的最值问题当x=________时,3x+2+3的值最小,最小值为________.解析:由二次根式的非负性知3x+2≥0,∴当3x+2=0即x=-23时,3x+2+3的值最小,此时最小值为3.故答案为-23,3.方法总结:对于二次根式a≥0(a≥0),可知其有最小值0.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念.教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件第2课时二次根式的性质1.理解和掌握(a)2=a(a≥0)和a2=|a|;(重点)2.能正确运用二次根式的性质1和性质2进行化简和计算.(难点)3/87一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是3,则面积是多少?如果正方形的面积是a,那么它的边长是多少?若边长是a,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】利用(a)2=a(a≥0)计算计算:(1)(0.3)2;(2)(-13)2;(3)(23)2;(4)(2x-y)2.解析:(1)可直接运用(a)2=a(a≥0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab)2=a2b2,再利用(a)2=a(a≥0)进行计算.解:(1)(0.3)2=0.3;(2)(-13)2=(-1)2×(13)2=13;(3)(23)2=22×(3)2=12;(4)(2x-y)2=22×(x-y)2=4(x-y)=4x-4y.方法总结:形如(nm)2(m≥0)的二次根式的化简,可先利用(ab)2=a2b2,化为n2·(m)2(m≥0)后再化简.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】利用a2=|a|计算计算:(1)22;(2)(-23)2;(3)-(-π)2.解析:利用a2=|a|进行计算.解:(1)22=2;(2)(-23)2=|-23|=23;(3)-(-π)2=-|-π|=-π.方法总结:a2=|a|的实质是求a2的算术平方根,其结果一定是非负数.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型三】利用二次根式的性质化简求值先化简,再求值:a+1+2a+a2,其中a=-2或3.解析:先把二次根式化简,再代入求值,即可解答.解:a+1+2a+a2=a+(a+1)2=a+|a+1|,当a=-2时,原式=-2+|-2+1|=-2+1=-1;当a=3时,原式=3+|3+1|=3+4=7.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值.变式训练:见《学练优》本课时练习“课堂达标训练”第10题探究点二:利用二次根式的性质进行化简【类型一】与数轴的综合如图所示为a,b在数轴上的位置,化简2a2-(a-b)2+(a+b)2.解析:由a,b在数轴上的位置确定a<0,a-b<0,a+b<0.再根据a2=|a|进行化简.解:由数轴可知-2<a<-1,0<b<1,则a-b<0,a+b<0.原式=2|a|-|a-b|+|a4/87+b|=-2a+a-b-(a+b)=-2a-2b.方法总结:利用a2=|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础.本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯.性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用第1课时二次根式的乘法1.掌握二次根式的乘法运算法则;(重点)2.会进行二次根式的乘法运算.(重点、难点)一、情境导入小颖家有一块长方形菜地,长6m,宽3m,那么这个长方形菜地的面积是多少?5/87二、合作探究探究点一:二次根式的乘法法则成立的条件式子x+1·2-x=(x+1)(2-x)成立的条件是()A.x≤2B.x≥-1C.-1≤x≤2D.-1<x<2解析:根据题意得x+1≥0,2-x≥0.解得-1≤x≤2.故选C.方法总结:运用二次根式的乘法法则:a·b=ab(a≥0,b≥0),必须注意被开方数是非负数这一条件.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:二次根式的乘法【类型一】二次根式的乘法运算计算:(1)53×27125;(2)918×(-1654);(3)135·23·(-3416);(4)2a8ab·(-236a2b)·3a(a≥0,b≥0).解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘.解:(1)原式=53×27125=35;(2)原式=-(9×16)18×54=-32182×3=-273;(3)原式=-(2×34)85×3×16=-3245=-355;(4)原式=-2a×238ab·6a2b·3a=-16a3b.方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘.最后结果要化为最简二次根式,计算时要注意积的符号.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】逆用性质3(即ab=a·b,a≥0,b≥0)进行化简化简:(1)196×0.25;(2)(-19)×(-6481);6/87(3)225a6b2(a≥0,b≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196×0.25=196×0.25=14×0.5=7;(2)(-19)×(-6481)=19×6481=19×6481=13×89=827;(3)225a6b2=225·a6·b2=15a3b.方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】二次根式的乘法的应用小明的爸爸做了一个长为588πcm,宽为48πcm的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据“矩形的面积=长×宽”“圆的面积=π×半径的平方”进行计算.解:设圆的半径为rcm.因为矩形木板的面积为588π×48π=168π(cm)2,所以πr2=168π,r=242(r=-242舍去).答:这个圆的半径为242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数.在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算第2课时二次根式的除法1.会利用商的算术平方根的性质化简二次根式;(重点,难点)2.掌握二次根式的除法法则,并会运用法则进行计算;(重点、难点)3.掌握最简二次根式的概念,并会熟练运用.(重点)7/87一、情境导入计算下列各题,观察有什么规律?(1)3649=________;3649=________.(2)916=________;916=________.3649________3649;916________916.二、合作探究探究点一:二次根式的除法计算:(1)4872;(2)612518;(3)27a2b312ab2;(4)12a3b5÷(-23a2b6)(a>0,b0).解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63;(2)612518=651218=6523=256;(3)27a2b312ab2=27a2b312ab2=9ab4=32ab;(4)12a3b5÷(-23a2b6)=12×(-32)a3b5a2b6=-34ab=-34bab.方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.变式训练:见《学练优》本课时练习“课堂达标训
本文标题:最新沪科版八年级数学下册教案
链接地址:https://www.777doc.com/doc-3761206 .html