您好,欢迎访问三七文档
半导体材料的发展现状及趋势====•半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国。近几年来,中国电子信息产品以举世瞩目的速度发展,2010年中国电子信息产业销售收入7.8万亿元,同比增长29.5%.成为中国第一大支柱产业。半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。半导体材料块状粉状•一、概述•在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝及其合金等称为第二代半导体材料;而将宽禁带(Eg2.3eV)的氮化镓、碳化硅、硒化锌和金刚石等称为第三代半导体材料。上述材料是目前主要应用的半导体材料,三代半导体材料代表品种分别为硅、砷化镓和氮化镓。本文沿用此分类进行介绍。•材料的物理性质是产品应用的基础,禁带宽度决定发射光的波长,禁带宽度越大发射光波长越短(蓝光发射);禁带宽度越小发射光波长越长。其它参数数值越高,半导体性能越好。电子迁移速率决定半导体低压条件下的高频工作性能,饱和速率决定半导体高压条件下的高频工作性能。•选择宽带隙半导体材料的主要理由是显而易见的。氮化镓的热导率明显高于常规半导体。这一属性在高功率放大器和激光器中是很起作用的。带隙大小本身是热生率的主要贡献者。在任意给定的温度下,宽带隙材料的热生率比常规半导体的小10~14个数量级。这一特性在电荷耦合器件、新型非易失性高速存储器中起很大的作用,并能实质性地减小光探测器的暗电流。宽带隙半导体材料的高介电强度最适合用于高功率放大器、开关和二极管。宽带隙材料的相对介电常数比常规材料的要小,由于对寄生参数影响小,这对毫米波放大器而言是有利用价值的。电荷载流子输运特性是许多器件尤其是工作频率为微波、毫米波放大器的一个重要特性。宽带隙半导体材料的电子迁移率一般没有多数通用半导体的高,其空穴迁移率一般较高,金刚石则很高。宽带隙材料的高电场电子速度(饱和速度)一般较常规半导体高得多,这就使得宽带隙材料成为毫米波放大器的首选者。•氮化镓材料的禁带宽度为硅材料的3倍多,其器件在大功率、高温、高频、高速和光电子应用方面具有远比硅器件和砷化镓器件更为优良的特性,可制成蓝绿光、紫外光的发光器件和探测器件。近年来取得了很大进展,并开始进入市场。•与制造技术非常成熟和制造成本相对较低的硅半导体材料相比,第三代半导体材料目前面临的最主要挑战是发展适合氮化镓薄膜生长的低成本衬底材料和大尺寸的氮化镓体单晶生长工艺。•可以预见:以硅材料为主体、GaAs半导体材料及新一代宽禁带半导体材料共同发展将成为集成电路及半导体器件产业发展的主流。•二、半导体材料发展现状••1、半导体硅材料•从目前电子工业的发展来看,尽管有各种新型的半导体材料不断出现,半导体硅材料以丰富的资源、优质的特性、日臻完善的工艺以及广泛的用途等综合优势而成为了当代电子工业中应用最多的半导体材料。硅是集成电路产业的基础,半导体材料中98%是硅。半导体器件的95%以上是用硅材料制作的,90%以上的大规模集成电路(LSI)、超大规模集成电路(VLSI)、甚大规模集成电路(ULSI)都是制作在高纯优质的硅抛光片和外延片上的。硅片被称作集成电路的核心材料,硅材料产业的发展和集成电路的发展紧密相关。•、•半导体硅材料分为多晶硅、单晶硅、硅外延片以及非晶硅、浇注多晶硅、淀积和溅射非晶硅等。现行多晶硅生产工艺主要有改良西门子法和硅烷热分解法。主要产品有棒状和粒状两种,主要是用作制备单晶硅以及太阳能电池等。生长单晶硅的工艺可分为区熔(FZ)和直拉(CZ)两种。其中,直拉硅单晶(CZ-Si)广泛应用于集成电路和中小功率器件。区域熔单晶(FZ-Si)目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。单晶硅和多晶硅应用最广。•经过多年的发展和竞争,国际硅材料行业出现了垄断性企业,日本、德国和美国的六大硅片公司的销量占硅片总销量的90%以上,其中信越、瓦克、SUMCO和MEMC四家的销售额占世界硅片销售额的70%以上,决定着国际硅材料的价格和高端技术产品市场,其中以日本的硅材料产业最大,占据了国际硅材料行业的半壁江山。•在集成电路用硅片中,8英寸的硅片占主流,约40~50%,6英寸的硅片占30%。当硅片的直径从8英寸到12英寸时,每片硅片的芯片数增加2.5倍,成本约降低30%,因此,国际大公司都在发展12英寸硅片,2010年产量将达到45亿平方英寸,iSuppli预测,2013年,300mm外延片产量将从2008年的36亿平方英寸增长到61亿平方英寸。•半导体硅材料自从60年代被广泛应用于各类电子元器件以来,其用量平均大约以每年12~16%的速度增长。目前全世界每年消耗约18000~25000吨半导体级多晶硅,消耗6000~7000吨单晶硅,硅片销售金额约60~80亿美元。可以说在未来30~50年内,硅材料仍将是LSI工业最基础和最重要的功能材料。电子工业的发展历史表明,没有半导体硅材料的发展,就不可能有集成电路、电子工业和信息技术的发展。•(2)中国国内研究状况•中国从上世纪60年代初开始研制砷化镓,近年来,随着中科稼英半导体有限公司、北京圣科佳电子有限公司相继成立,中国的化合物半导体产业迈上新台阶,走向更快的发展道路。中科镓英公司成功拉制出中国第一根6.4公斤5英寸LEC法大直径砷化镓单晶;信息产业部46所生长出中国第一根6英寸砷化镓单晶,单晶重12kg,并已连续生长出6根6英寸砷化镓单晶;西安理工大在高压单晶炉上称重单元技术研发方面取得了突破性的进展。•化合物半导体是继第一代硅基半导体为核心的微电子后第二代、第三代半导体,以其独特而优越的电子特性为人类带来一次光电子产业革命。二十一世纪是光电子的世纪,化合物半导体为核心的光电子产业已成为全球发达国家正在追逐发展的二十一世纪新兴高科技产业,其对于国防战略、能源战略、环保战略、信息产业、新型工业至关重要,是提高综合国力的关键。以化合物半导体产业中的半导体照明为例,LED是世界照明史上的一次新革命,传统照明高耗材高耗能高污染,已经不适应当今世界照明发展的要求。如果我国2015年在全国照明市场推广并将30%白炽灯转为半导体照明,每年可以节省约800余亿度电,相当于一个三峡工程的发电总量。按发电量和减排二氧化碳等计算,每年并可节省7亿余吨电煤,相当于我国年耗电煤总量的30%,可有效地节能减排促进环保。我国正在建设资源节约型社会,故应该大力支持并推进化合物半导体产业发展和在市场应用方面制订政策,迎头赶上全球半导体产业蓬勃发展的新潮流。•目前,以高敬德委员为主的几位全国政协委员投入数十亿港元引进的美国、欧洲和日本等国家对我国严格封锁和禁运的高尖端设备,已经辗转到达产业基地。核心区首期项目建设所需的数十名由来自美国、德国、日本、台湾等国家和地区的核心技术专家和生产技术团队已经投入工作,全球同行业单体最大的外延片厂已于去年10月份投产,另一全球同行业单体最大的芯片厂将于今年5月份投产。上述两个厂投产后,我国半导体微波器(MW)外延片、芯片产能可进入世界前三位;半导体激光器(LD)外延片、芯片产能可进入世界前四位;半导体照明(LED)外延片、芯片产能可进入世界前五位,从此,填补了我国光电子领域只有树枝、树叶,而没有树根、主干的历史空白,并站到了世界光电子领域的最前列。•(1)国外发展概况•美国、日本、俄罗斯及西欧都极其重视宽禁带半导体的研究与开发。从目前国外对宽禁带半导体材料和器件的研究情况来看,主要研究目标是SiC和GaN技术,其中SiC技术最为成熟,研究进展也较快;GaN技术应用面较广泛,尤其在光电器件应用方面研究较为透彻。而金刚石技术研究报导较少,但从其材料优越性来看,颇具发展潜力。•国外对SiC的研究早在五十年代末和六十年代初就已开始了。到了八十年代中期,美国海军研究局和国家宇航局与北卡罗来纳州大学签订了开发SiC材料和器件的合同,并促成了在1987年建立专门研究SiC半导体的Cree公司。九十年代初,美国国防部和能源部都把SiC集成电路•为重点项目,要求到2000年在武器系统中要广泛使用SIC器件和集成电路,从此开始了有关SiC材料和器件的系统研究,并取得了令人鼓舞的进展。即目前为止,直径≥50mm具有良好性能的半绝缘和掺杂材料已经商品化。美国政府与西屋西子公司合作,投资450万美元开了3英寸纯度均匀、低缺陷的SiC单晶和外延材料。另外,制造SiC器件的工艺如离子注入、氧化、欧姆接触和肖特基接触以及反应离子刻蚀等工艺取得了重大进展,所以促成了SiC器件和集成电路的快速发展。由于SiC器件的优势和实际需求,它已经显示出良好的应用前景。航空、航天、治炼以及深井勘探等许多领域中的电子系统需要工作在高温环境中,这要求器件和电路能够适应这种需要,而各类SiC器件都显示良好的温度性能。SiC具有较大的禁带宽度,使得基于这种材料制成的器件和电路可以满足在470K到970K条件下工作的需要,目前有些研究水平已经达到970K的工作温度,并正在研究更高的工作温度的器件和集成电路。目前SiC器件的研究概况见表7。•SiCDevicesPowerMOSFET4H-SiCMESFET4H-SiCJFET6H-SiCJFETShottkydiodecomment600V,8Adevicesfabricatedfmax=42GHzfmax=25GHz,8.5dbat10GHμeff=340cm2·V-1·S-1at300KEnhance-mentmodeOver1kVbreakdownat300KTm(K)673673673723873973表7SiC器件的研究概表•国外对SiC器件的研究证明了SiC器件的抗辐射的能力。6H-SiC整流器的抗电磁脉冲(EMP)能力至少是硅器件的2倍。实验结果表明结型6H-SiC器件有较强的抗下辐射的能力。埋栅JFET在γ辐射条件下的测试结果,总剂量100兆拉德条件下,跨导和夹断电压基本不变。对125伏和410伏6H-SiCpn结整流器进行中子辐照实验,中子流从1013nA/cm2,到1015nA/cm2,时,辐照前后1000mA电流的正向压降和雪崩击穿电压的测试结果说明:具有高掺杂的125伏整流器在正向电流400mA的降压几乎不变(30伏),而雪崩击穿电压仅增加了8.8%,而低掺杂的410伏整流器正向压降和雪崩击穿电压分别增加了8.6%和4%。•GaN在宽禁带半导体中也占有主导地位。GaN半导体材料的商业应用研究始于1970年,其在高频和高温条件下能够激发蓝光的特性一开始就吸引了半导体开发人员的极大兴趣。但GaN的生长技术和器件制造工艺直到近几年才取得了商业应用的实质进步和突破。由于GaN半导体器件在光电子器件和光子器件领域广阔的应用前景,其广泛应用预示着光电信息乃至光子信息时代的来临。•1993年日本的日亚化学公司研制出第一支蓝光发光管,1995年该公司首先将GaN蓝光LED商品化,到1997年某市场份额已达1.43亿美元。据StrategiesUnlimited的预测,GaN器件年增长率将高达44%,到2006年其市场份额将达30亿美元。目前,日亚化学公司生产蓝光LED,峰值波长450nm,输出光为3mw,发光亮度2cd(Ip=20mA)。GaN绿光LED,峰值波长525nm,输出光功率为2mw,发光亮度6cd(Ip=20mA)。此外,日亚化学公司利用其GaN蓝光LED和磷光技术,又开发出白光固体发光器件产品,不久将来可替代电灯,既提高灯的寿命,又大大地节省能源。因此,GaN越来越受到人们的欢迎。GaN蓝光激光器也被日亚公司首先开发成功,目前寿命已超过10000hr。与此同时,GaN的电子器件发展也十分迅速。目前GaNFET性能已达到ft=52GHz,fmax=82GHz。在18GHz频率下,CW输出功率密
本文标题:31半导体
链接地址:https://www.777doc.com/doc-3817797 .html