您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 1.1.3 导数的几何意义 课件(24张PPT)
1.1.3导数的几何意义1高二数学选修2-2第一章导数及其应用xxfxxflimxylimxf0x0x000-+==即:000xxyfxxxfxy=函数=在=处的导数,记作:或表示“平均变化率”xx-fx+xf=00xy附近的变化情况。=反映了函数在处的瞬时变化率,=在表示函数=000x0xxxxxfxylimxf2一、复习导数的定义其中:⑴其几何意义是表示曲线上两点连线(就是曲线的割线)的斜率。其几何意义是?P1P2P3P4PTTTTPPxfyxfyxfyxfyOyxOyxOyxOyx211.图1234?,,,,,,,.什么是趋势化变的割线时趋近于点沿着曲线当点图如察观nnnnPPxfxPxfnxfxP004321211PQoxyy=f(x)割线切线T一、曲线上一点的切线的定义结论:当Q点无限逼近P点时,此时直线PQ就是P点处的切线PT.点P处的割线与切线存在什么关系?新授xoyy=f(x)设曲线C是函数y=f(x)的图象,在曲线C上取一点P(x0,y0)及邻近一点Q(x0+△x,y0+△y),过P,Q两点作割线,当点Q沿着曲线无限接近于点P点P处的切线。即△x→0时,如果割线PQ有一个极限位置PT,那么直线PT叫做曲线在曲线在某一点处的切线的定义△x△yPQT此处切线定义与以前的定义有何不同?圆的切线定义并不适用于一般的曲线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线(交点可能不惟一)适用于各种曲线。所以,这种定义才真正反映了切线的直观本质。2l1lxyABCxoyy=f(x)P(x0,y0)Q(x1,y1)M△x△y割线与切线的斜率有何关系呢?xxfxxfkPQ)()(xy=即:当△x→0时,割线PQ的斜率的极限,就是曲线在点P处的切线的斜率,xxfxxfxyxx)()(k0000limlim=所以:当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:xxfxxfxykxx)()(limlimtan0000切线这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数平均变化率的极限.要注意,曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是.)(0xf故曲线y=f(x)在点P(x0,f(x0))处的切线方程是:))(()(000xxxfxfy导数的几何意义例1:(1)求函数y=3x2在点(1,3)处的导数.22103(1)31|limxxxyx解:2210[(1)1](11)|limxxxyx解:22(1)yx切线方程:20xy即:(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.题型:导数的几何意义的应用2036limxxxx0lim3(2)xx6202lim2xxxx练习:如图,已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.)38,2(313Pxy上一点yx-2-112-2-11234OP313yx31(1),3yx解:.42|22xy即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.330011()33limlimxxxxxyyxx2230133()()lim3xxxxxxx22201lim[33()].3xxxxxx例2.求抛物线y=x2过点(,6)的切线方程。52解:点(,6)不在抛物线上,设此切线过抛物线上的点(x0,x02),因为5222000000()()()limlimxxfxxfxxxxxx20002()lim2xxxxxx又因为此切线过点(,6)和点(x0,x02),52所以此切线方程的斜率为2x0,所以20006252xxx即x02-5x0+6=0,解得x0=2,或x0=3,所以切线方程为y=4x-4或y=6x-9.二、函数的导数:函数在点处的导数、导函数、导数之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一。0x0()fx()fx0xx0x0()fx()fx0x0()fx0x()fx课堂小结2求利用导数求曲线上P(x0,f(x0))处的切线方程①先求出该点的导数即切线的斜率;②再利用点斜式求出切线方程)(0xfk))(()(000xxxfxfy1、导数的几何意义练习题1.曲线y=x2在x=0处的()A.切线斜率为1B.切线方程为y=2xC.没有切线D.切线方程为y=0D2.已知曲线y=2x2上的一点A(2,8),则点A处的切线斜率为()A.4B.16C.8D.2C3.函数y=f(x)在x=x0处的导数f’(x0)的几何意义是()A.在点x=x0处的函数值B.在点(x0,f(x0))处的切线与x轴所夹锐角的正切值C.曲线y=f(x)在点(x0,f(x0)处的切线的斜率D.点(x0,f(x0)与点(0,0)连线的斜率C4.已知曲线y=x3上过点(2,8)的切线方程为12x-ay-16=0,则实数a的值为()A.-1B.1C.-2D.2B5.若f’(x0)=-3,则=()A.-3B.-6C.-9D.-12hhxfhxfh)3()(lim000D6.设y=f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,1)处的切线的斜率为()A.2B.-1C.D.-212)1()1(lim0xxffx21D
本文标题:1.1.3 导数的几何意义 课件(24张PPT)
链接地址:https://www.777doc.com/doc-3981172 .html