您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高2010届一轮复习教案《热学》部分全面版
高2010届一轮复习教案《热学》部分(全套68个)第二部分热学§2.气体、固体和液体的性质一、气体的体积、压强、温度间的关系二、固体和液体的性质§2.气体、固体和液体的性质一、气体的体积、压强、温度间的关系目的要求复习气体的体积、压强、温度间的关系,理想气体的状态方程。知识要点1.气体的状态参量⑴温度。温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。关系是t=T-T0,其中T0=273.15K,摄氏度不再采用过去的定义。两种温度间的关系可以表示为:T=t+273.15K和ΔT=Δt,要注意两种单位制下每一度的间隔是相同的。0K是低温的极限,它表示所有分子都停止了热运动。可以无限接近,但永远不能达到。⑵体积。气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。⑶压强。气体的压强是由于气体分子频繁碰撞器壁而产生的。(绝不能用气体分子间的斥力解释!)一般情况下不考虑气体本身的重量,所以同一容器内气体的压强处处相等。但大气压在宏观上可以看成是大气受地球吸引而产生的重力而引起的。(例如在估算地球大气的总重量时可以用标准大气压乘以地球表面积。)压强的国际单位是帕,符号Pa,常用的单位还有标准大气压(atm)和毫米汞柱(mmHg)。它们间的关系是:1atm=1.013×105Pa=760mmHg;1mmHg=133.3Pa。2.气体分子动理论⑴气体分子运动的特点是:①气体分子间的距离大约是分子直径的10倍,分子间的作用力十分微弱。通常认为,气体分子除了相互碰撞或碰撞器壁外,不受力的作用。②每个气体分子的运动是杂乱无章的,但对大量分子的整体来说,分子的运动是有规律的。研究的方法是统计方法。气体分子的速率分布规律遵从统计规律。在一定温度下,某种气体的分子速率分布是确定的,可以求出这个温度下该种气体分子的平均速率。⑵用分子动理论解释气体压强的产生(气体压强的微观意义)。气体的压强是大量分子频繁碰撞器壁产生的。压强的大小跟两个因素有关:①气体分子的平均动能,②分子的密集程度。3.气体的体积、压强、温度间的关系(新大纲只要求定性介绍)⑴一定质量的气体,在温度不变的情况下,体积减小时,压强增大,体积增大时,压强减小。(玻意耳定律:PV=恒量)⑵一定质量的气体,在压强不变的情况下,温度升高,体积增大。(盖·吕萨克定律:V/T=恒量)⑶一定质量的气体,在体积不变的情况下,温度升高,压强增大。(查理定律:P/T=恒量)⑷一定质量理想气体状态方程:PV/T=恒量说明:(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。4.气体压强的计算气体压强的确定要根据气体所处的外部条件,往往需要利用跟气体接触的液柱和活塞等物体的受力情况和运动情况计算。5.热力学第一定律在气体中的应用对一定质量的理想气体(除碰撞外忽略分子间的相互作用力,因此没有分子势能),热力学第一定律ΔU=Q+W中:⑴ΔU仅由温度决定,升温时为正,降温时为负;⑵W仅由体积决定,压缩时为正,膨胀时为负;⑶Q由ΔU和W共同决定;⑷在绝热情况下Q=0,因此有ΔU=W。例题分析例1:竖直平面内有右图所示的均匀玻璃管,内用两段水银柱封闭两段空气柱a、b,各段水银柱高度如图所示。大气压为p0,求空气柱a、b的压强各多大?解:从开口端开始计算:右端为大气压p0,同种液体同一水平面上的压强相同,所以b气柱的压强为pb=p0+ρg(h2-h1),而a气柱的压强为pa=pb-ρgh3=p0+ρg(h2-h1-h3)。此类题求气体压强的原则就是从开口端算起(一般为大气压),沿着液柱在竖直方向上,向下加ρgh,向上减ρgh即可(h为高度差)。例2:右图中两个气缸的质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的气缸静止在水平面上,右边的活塞和气缸竖直悬挂在天花板下。两个气缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强各多大?解:求气体压强要以跟气体接触的物体为对象进行受力分析,在本题中,可取的研究对象有活塞和气缸。两种情况下活塞和气缸的受力情况的复杂程度是不同的:第一种情况下,活塞受重力、大气压力和封闭气体压力三个力作用,而且只有气体压力是未知的;气缸受重力、大气压力、封闭气体压力和地面支持力四个力,地面支持力和气体压力都是未知的,要求地面压力还得以整体为对象才能得出。因此应选活塞为对象求pA。同理第二种情况下应以气缸为对象求pB。得出的结论是:SMgPPSmgPPBA00,例3:右图中气缸静止在水平面上,缸内用活塞封闭一定质量的空气。活塞的的质量为m,横截面积为S,下表面与水平方向成θ角,若大气压为p0,求封闭气体的压强p解:以活塞为对象进行受力分析,关键是气体对活塞的压力方向应该垂直与活塞下表面而向斜上方,与竖直方向成θ角,接触面积也不是S而是S1=S/cosθ。因此竖直方向受力平衡方程为:pS1cosθ=mg+p0S,得p=p0+mg/S。结论跟θ角的大小无关。h1h3h2abABθθpS1Nmgp0S例4如图所示,大小不同的两个气缸A、B固定在水平面上,缸内的横截面积分别为SA和SB且SA=3SB。两缸内各有一个活塞,在两个气缸内分别封闭一定质量的空气,并用水平杆相连。已知大气压为p0,气缸A内空气的压强为pA=1.2p0,不计活塞和气缸间的摩擦阻力,求气缸B内空气的压强pB解:应该以整体为研究对象用水平方向的合力为零列方程,而不能认为A、B内气体的压强相等。因为两个活塞的横截面积是不同的。应该以两个活塞和连杆整体为研究对象进行受力分析,同时要考虑大气压的影响,受力图如上。在水平方向上有:pASA+p0SB=pBSB+p0SA,代入SA=3SB可得pB=3pA-2p0=1.6p0本题还可以把该装置竖立起来,那么在以活塞和连杆为对象受力分析时,还应考虑到重力的作用。例5:如图为医院为病人输液的部分装置,图中A为输液瓶,B为滴壶,C为进气管,与大气相通。则在输液过程中(瓶A中尚有液体),下列说法正确的是:①瓶A中上方气体的压强随液面的下降而增大;②瓶A中液面下降,但A中上方气体的压强不变;③滴壶B中的气体压强随A中液面的下降而减小;④在瓶中药液输完以前,滴壶B中的气体压强保持不变A.①③B.①④C.②③D.②④解:进气管C端的压强始终是大气压p0,设输液瓶A内的压强为pA,可以得到pA=p0-ρgh,因此pA将随着h的减小而增大。滴壶B的上液面与进气管C端的高度差不受输液瓶A内液面变化的影响,因此压强不变。选B。例6:长直均匀玻璃管内用水银柱封闭一定质量的空气后倒插入水银槽内。静止时露出水银槽面的水银柱高为h,保持温度不变,稍向上提玻璃管(管口仍在槽内水银面下),封闭在管内的空气的体积V和压强p以及水银柱高h各如何变化?解:一定质量的气体在温度不变使,气体的压强p和体积V必然同时变化,而达到平衡后,p+ρgh=p0的关系应该依然成立。假设V不变,那么p也不变,而提升后h变大,p+ρgh将大于p0,因此管内水银柱将要下降,即封闭空气的体积V必然增大,压强p必然减小,又由于最终应该有p+ρgh=p0,所以h必然增大。本题也可以假设提升后p不变,进行推导,结论是完全一致的。注意前提:管内必须封闭有一定质量的空气。若水银柱上端是真空,那h就始终满足p0=ρgh,向上提升玻璃管不会影响h的大小,那么V就一定增大了。例7:两端封闭的均匀直玻璃管竖直放置,内用高h的汞柱把管内空气分为上下两部分,静止时两段空气柱的长均为L,上端空气柱压强为p1=2ρgh(ρ为水银的密度)。当玻璃管随升降机一起在竖直方向上做匀变速运动时,稳定后发现上端空气柱长减为2L/3。则下列说法中正确的是A.稳定后上段空气柱的压强大于2ρghB.稳定后下段空气柱的压强小于3ρghC.升降机一定在加速上升ABpASAp0SAp0SBpBSBhACBLLhD.升降机可能在匀减速上升解:系统静止时下段空气柱的压强是3ρgh。做匀变速运动稳定后上段空气柱体积减小说明其压强增大,而下段空气柱体积增大,说明其压强减小。由水银柱的受力分析可知,其合力方向向下,因此加速度向下,可能匀加速下降,也可能匀减速上升。选ABD例8:在一个固定容积的密闭容器中,加入3L的X(g)和2L的Y(g),在一定条件下这两种气体发生反应而生成另两种气体4X(g)+3Y(g)2Q(g)+nR(g),达到平衡后,容器内温度不变,而混合气体的压强比原来增大,则该反应方程中的n值可能为A.3B.4C.5D.6解:由于反应前后所有物质都是气态,设反应前后的总的物质的量分别为N1、N2,由于在一定温度和体积下,气体的压强和气体物质的量成正比,因此生成物的物质的量应该大于反应前的物质的量,只能取n=6,选D。例9:钢瓶内装有高压氧气。打开阀门氧气迅速从瓶口喷出,当内外气压相等时立即关闭阀门。过一段时间后再打开阀门,会不会再有氧气逸出?解:第一次打开阀门氧气“迅速”喷出,是一个绝热过程Q=0,同时氧气体积膨胀对外做功W0,由热力学第一定律ΔU0,即关闭阀门时瓶内氧气温度必然低于外界温度,而压强等于外界大气压;“过一段时间”经过热交换,钢瓶内氧气的温度又和外界温度相同了,由于体积未变,所以瓶内氧气压强将增大,即大于大气压,因此再次打开阀门,将会有氧气逸出。例10:一定质量的理想气体由状态A经过A→B→C→A的循环过程(A→B为等温线),其中那些阶段是吸热的,那些阶是放热的?整个过程是吸热还是放热?解:首先可以判定C状态下气体温度较高。根据热力学第一定律分阶段列表进行分析如下:各阶段都应先根据温度和体积的变化确定ΔU和W的正负,再根据ΔU=Q+W确定Q的正负。全过程始末温度相同,所以内能相同,但由图可知:W=FS=pΔV(气体做功等于p-V曲线下到横轴间的面积),由图可见A→B阶段气体对外界做功少,C→A阶段外界对气体做功多,B→C阶段气体体积不变W=0,因此全过程外界对气体作正功,气体必然放热。结论是A→B、B→C气体吸热;C→A和全过程气体放热。二、固体和液体的性质目的要求复习晶体和非晶体的性质。液体的表面现象等。知识要点1.固体的性质(1)晶体和非晶体:①由分子、原子或离子按一定的规律重复排列而成的固体叫做晶体。晶体的外形具有规OVpABCΔUWQA→B0-+B→C+0+C→A-+-全过程0+-则的几何形状,如食盐晶体呈立方体,石英的晶体中间是六棱柱,两端是六棱锥,雪花是冰的晶体,各种雪花的形状都是六角形的。像玻璃、松香、沥青等没有规则的几何形状的固体叫做非晶体。②晶体在不同方向上导热性能、导电性能等物理性质不相同,这种特性叫做各向异性,而非晶体在各个方向上的各种物理性质都是相同的。③晶体都有固定的熔点,而非晶体没有熔点。④晶体有单晶体和多晶体两种。整个物体就是一个晶体叫做单晶体,如果整个物体由大量不规则排列的小晶体组成,叫做多晶体。多晶体不具有规则的几何形状,各种金属材料都是多晶体。由于小晶体的排列是杂乱的,所以金属整体表现为各向同性。单晶体的硅与锗是半导体工业的重要原材料。应用十分广泛的微电子技术、计算机技术就需要用单晶体硅制成的半导体元件。我国在60年代用单晶体红宝石制成了第一台激光器。我国自制的人造金刚石钻头,已用于地质勘探。⑤有的物质可以是晶体,也可以是非晶体。例如石英水晶是晶体,而石英玻璃却是非晶体。有的晶体与非晶体在一定的条件下可以互相转化。⑥液晶是一种液态晶体,它一方面像液体,具有流动性,另一方面又像晶体,具有各向异性。有一种液晶,在外加电压的影响下会由透明状
本文标题:高2010届一轮复习教案《热学》部分全面版
链接地址:https://www.777doc.com/doc-4054895 .html