您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2016年浙江省高考数学模拟试卷(文科)
2016年浙江省高考数学模拟试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5}C.{2,3,4,5,6}D.[2,6]2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列函数中既是奇函数又是周期函数的是()A.y=x3B.y=cos2xC.y=sin3xD.4.已知数列{an}是正项等比数列,满足an+2=2an+1+3an,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.an+1=2Sn+1B.an=2Sn+1C.an+1=Sn+1D.an=2Sn﹣1﹣15.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A.B.C.D.56.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2B.﹣1C.0D.7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{an}的前n项和为,则首项a1=;该数列的首项a1与公差d满足的=.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为.11.已知函数,则=;该函数在区间上的最小值为.12.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.13.三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧棱AA1与底边AB,AC所成的角均为60°.若顶点A1在下底面的投影恰在底边BC上,则该三棱柱的体积为.14.已知正数a,b满足a+2b=2,则的最小值为.15.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则的取值范围是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.(1)试求线段AD的长度;(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.17.已知正项递增等比数列{an}的首项为8,其前n项和记为Sn,且S3﹣2S2=﹣2.(1)求数列{an}的通项公式;(2)设数列{bn}满足,其前n项和为Tn,试求数列的前n项和Bn.18.四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M分别为PA,BC的中点.(1)证明:直线QM∥平面PCD;(2)若二面角A﹣BD﹣Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.19.已知抛物线C:y2=4x.直线l:y=k(x﹣8)与抛物线C交于A,B(A在B的下方)两点,与x轴交于点P.(1)若点P恰为弦AB的三等分点,试求实数k的值.(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.20.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|(Ⅰ)若f(0)≥1,求a的取值范围;(Ⅱ)求f(x)在[﹣2,2]上的最小值.2016年浙江省高考数学模拟试卷(文科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5}C.{2,3,4,5,6}D.[2,6]【考点】交集及其运算.【分析】分别求出M与N中不等式的解集,找出解集中的正整数解及整数解确定出M与N,求出两集合的交集即可.【解答】解:由M中不等式变形得:(x﹣6)(x+1)<0,解得:﹣1<x<6,x∈N,即M={0,1,2,3,4,5},由N中不等式变形得:2<x<23=8,x∈Z,即N={3,4,5,6,7},则M∩N={3,4,5},故选:B.2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,即可判断出.【解答】解:“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,∴“某几何体的三视图完全相同”是“该几何体为球”的必要不充分条件.故选:B.3.下列函数中既是奇函数又是周期函数的是()A.y=x3B.y=cos2xC.y=sin3xD.【考点】函数的周期性;函数奇偶性的判断.【分析】根据基本初等函数奇偶性和周期性进行判断即可.【解答】解:A.函数y=x3为奇函数,不是周期函数;B.y=cos2x是偶函数,也是周期函数,但不是奇函数;C.y=sin3x是奇函数且是周期函数;D.是周期函数,既不是奇函数也不是偶函数,综上只有C符合题意,故选:C.4.已知数列{an}是正项等比数列,满足an+2=2an+1+3an,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.an+1=2Sn+1B.an=2Sn+1C.an+1=Sn+1D.an=2Sn﹣1﹣1【考点】等比数列的通项公式.【分析】设正项等比数列数列{an}的公比为q,0,满足an+2=2an+1+3an,且首项为方程x2+2x﹣3=0的一个根.可得q2=2q+3,a1=1.再利用等比数列的通项公式及其前n项和公式即可得出.【解答】解:设正项等比数列数列{an}的公比为q,0,满足an+2=2an+1+3an,且首项为方程x2+2x﹣3=0的一个根.∴q2=2q+3,a1=1.解得q=3.∴an=3n﹣1,an+1=3n,Sn=,则2Sn+1=3n=an+1.故选:A.5.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A.B.C.D.5【考点】向量数乘的运算及其几何意义.【分析】先求出∠B的度数,从而求出sinB,根据三角形的面积公式求出△ABD的面积即可.【解答】解:如图示:,cosB==﹣,∴∠B=120°,∴sinB=,∴S△ABD=×5×2×=,故选:A.6.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2B.﹣1C.0D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数的图象和性质求出A,ω和φ的值进行求解即可.【解答】解:由图象知函数的最大值为1,最小值为﹣3,则,得A=2,B=﹣1,=﹣=,即T=π=,即ω=2,则f(x)=2sin(2x+φ)﹣1,∵f()=2sin(2×+φ)﹣1=1,∴sin(+φ)=1,即+φ=+2kπ,则φ=2kπ﹣,∵φ∈(0,π),∴当k=1时,φ=2π﹣=,∴f(x)=2sin(2x+)﹣1,则f()=2sin(2×+)﹣1=2sin(π+)﹣1=﹣2×﹣1=﹣1﹣1=﹣2,故选:A7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.【考点】双曲线的简单性质.【分析】设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,运用韦达定理和中点坐标公式,再由条件可得2c<<4c,结合a,b,c的关系和离心率公式,计算即可得到所求范围.【解答】解:设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有AB的中点的横坐标为,由题意可得2c<<4c,化简可得2a2<b2<3a2,即有3a2<c2<4a2,即a<c<2a,可得e=∈(,2).故选:D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)【考点】函数恒成立问题.【分析】根据二次函数的对称轴判断出函数单调性,得出a=f(1),求出a=2,进而求出只需4t+2t﹣2≥0,得出答案.【解答】解:函数f(x)=x2﹣2ax+5(a>1)的对称轴为x=a∈[1,a]∴函数f(x)=x2﹣2ax+5(a>1)在[1,a]上单调递减∵函数f(x)的定义域和值域均为[1,a]∴a=f(1)∴a=2∴f(x)=x2﹣4x+5,g(x)=log3x.∵对于任意的x1,x2∈[1,3],1≤f(x)≤2,0≤g(x)≤1,∴4t+2t﹣2≥0,∴t≥0.故选:C.二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{an}的前n项和为,则首项a1=﹣2;该数列的首项a1与公差d满足的=16.【考点】等差数列的前n项和.【分析】根据等差数列{an}的前n项和求出a1,a2,a3;再根据等差中项的概念列出方程求出c的值,从而得出a1和公差d,即可得出的值.【解答】解:等差数列{an}的前n项和为,∴a1=S1=2﹣4+c=c﹣2,a2=S2﹣S1=(8﹣8+c)﹣(c﹣2)=2,a3=S3﹣S2=(18﹣12+c)﹣c=6;又2a2=a1+a3,∴4=(c﹣2)+6,解得c=0;∴a1=﹣2,数列{an}的公差为d=a3﹣a2=6﹣2=4,∴=(﹣2)4=16.故答案为:﹣2,16.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为6.【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,得到三角形的面积,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,求出z的最大值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(1,),由,解得:B(1,﹣4),而C到AB的距离是2,∴S△ABC=|AB|•2=,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,z最大,z的最大值是6,故答案为:,6.11.已知函数,则=+;该函数在区间上的最小值为﹣+.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用三角函数的诱导公式将函数进行化简,结合三角函数的图象和性质进行求解即可.【解答】解:=sinxcosx+cos2x=sin2x+×(1+cos2x)=sin2x+cos2x+=sin(2x+)+,则=sin(2×+)+=sin(+)+=cos+=+,∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=﹣时,f(x)取得最小值,此时最小值为sin(﹣)+=﹣+,故答案为:+,﹣+.12.已知直线l过点P(2,1
本文标题:2016年浙江省高考数学模拟试卷(文科)
链接地址:https://www.777doc.com/doc-4115801 .html