您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考热点:圆的综合问题
Page1热点典例中考热点加餐:圆的综合问题热点训练第三章圆课前小测Page2课前小测知识小测1.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BEC.BD=BCD.△BDE∽△CAEBPage3课前小测2.如图,⊙O的直径AB与弦CD(不是直径)交于点E,且CE=DE,∠A=30°,OC=4,那么CD的长为()A.B.4C.D.83.(2015秋•越秀区期末)如图,⊙O是△ABC的外接圆,若AB=OA=OB,则∠C等于()A.30°B.40°C.60°D.80°CAPage4课前小测4.(永安市质检)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,以A为圆心,AB为半径画弧,交AC于D点,则阴影部分面积为__________.(结果保留π)5.(2016•曲靖一模)如图,AB是半圆的直径,点C在半圆周上,连接AC,∠BAC=30°,点P在线段OB上运动.则∠ACP的度数可以是.2﹣60°Page5课前小测6.(黄冈)如图,在△ABC中,AB=AC=,BC=2,以AB为直径的⊙O分别交AC、BC两边于点D、E,则△CDE的面积为.Page6热点典例知识点1圆的综合题例1(深圳)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)Page7热点典例【分析】(1)连接CB,AB,CE,由点C为劣弧AB上的中点,可得出CB=CA,再根据CD=CA,得△ABD为直角三角形,可得出∠ABE为直角,根据90度的圆周角所对的弦为直径,从而证出AE是⊙O的直径;(2)由(1)得△ACE为直角三角形,根据勾股定理得出CE的长,阴影部分的面积等于半圆面积减去三角形ACE的面积.Page8热点典例(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∵Rt△斜边上的中线等于斜边的一半,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.Page9热点典例类比精炼1.如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=2,求图中阴影部分的面积(结果保留π).Page10热点典例(2)∵AB=2,AB=AC,∴AC=2,∵OA⊥CA,∠C=30°,∴OA=AC•tan30°=2•=2.∴S扇形OAD==π.∴图中阴影部分的面积等于S△AOC-S扇形OAD=2-π.解:(1)直线CA与⊙O相切.如图,连接OA.∵AB=AC,∠B=30°,∴∠C=∠B=30°∠DOA=2∠B=60°.∴∠CAO=90°,即OA⊥CA.∵点A在⊙O上,∴直线CA与⊙O相切;Page11热点典例例2:如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.Page12热点典例【分析】(1)根据四边形ABCD是⊙O内接四边形,可得∠DCE=∠BAD,根据弧BD=弧AD,可得∠BAD=∠ACD,等量代换得到∠DCE=∠ACD,从而求解;(2)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODC=∠OCD,等量代换得到∠DCE=∠ODC,根据平行线的判定和性质得到∠ODE=∠DEC,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(3)延长DO交AB于点H.根据三角形中位线定理可得HO=BC=3,根据勾股定理可得OD,得到HD,再根据矩形的判定和性质得到BE=HD=8,从而得到CE的长.Page13热点典例解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.Page14热点典例(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=2.Page15热点典例类比精炼2.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点.Page16热点典例(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,∵AB是⊙O的直径,DE⊥AB,∴∠ADB=∠AED=90°,∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,∴∠ADE=∠DBA,∴∠DAC=∠ADE,∴∠DAC=∠DBA;Page17热点典例(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=PA,∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,∴∠PDF=∠PFD,∴PD=PF,∴PA=PF,即P是线段AF的中点.Page18热点训练3.如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于()A.25°B.30°C.50°D.65°CPage19热点训练4.如图,在Rt△ABC中,∠C=90°,O是AB上一点,⊙O与BC相切于点E,交AB于点F,连接AE,若AF=2BF,则∠CAE的度数是.30°Page20热点训练5.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F(1)求证:DF为⊙O的切线;(2)若等边三角形ABC的边长为4,求DF的长;(3)求图中阴影部分的面积.证明:(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;Page21热点训练(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=;(3)连接OE,由(2)同理可知CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.Page226.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.(1)求出A,B两点的坐标;(2)试确定经过A、B且以点P为顶点的抛物线解析式;(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.热点训练Page23解:(1)如图,作CH⊥AB于点H,连接OA,OB,∵CH=1,半径CB=2∴HB=,故A(1﹣,0),B(1+,0).热点训练(2)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),设抛物线解析式y=a(x﹣1)2+3,把点B(1+,0)代入上式,解得a=﹣1;∴y=﹣x2+2x+2.Page24(3)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形∴PC∥OD且PC=OD.∵PC∥y轴,∴点D在y轴上.又∵PC=2,∴OD=2,即D(0,2).又D(0,2)满足y=﹣x2+2x+2,∴点D在抛物线上∴存在D(0,2)使线段OP与CD互相平分.热点训练Page25热点训练Page26热点训练Page27热点训练Page28热点训练Page29谢谢!
本文标题:中考热点:圆的综合问题
链接地址:https://www.777doc.com/doc-4123514 .html