您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > Minitab制作图形方法
QC手法和技巧一、查检图二、层别法三、特性要因图四、柏拉图五、散布图六、直方图七、对称图八、能力分析--CPK九、量具线性和偏移十、量具重复性和再现性十一、控制图查检表定义:为了便于收集数据,使用简单记录表填记并予统计整理,以作进一步分析或作为核对、检查之用而设计的一种表格或图表.作法:1.明确目的.2.决定查检项目.3.决定检查方式(抽检、全检).4.决定检验基准、数量、时间、对象等.5.设计表格实施检验.查检表的种类:1.记数用查检表:主要用在根据收集之数据以调查不良项目、不良原因、工程分布、缺点位置等情形必要时对收集的数据要予以层别.ABNo.1No.2No.1No.2合计操作员机号不良项目日期尺寸外观材料其他尺寸尺寸尺寸外观外观外观材料材料材料其他其他其他月日月日2.点检用查检表:主要功用是为要确认作业实施、机械设备的实施情形,或为预防发生不良或事故,确保安全时使用.这种点检表可以防止遗漏或疏忽造成缺失的产生.把非作不可、非检查不可的工作或项目,按点检顺序列出,逐一点检并记录之.实例:编号1234567891各部位油量是否正常2操作按钮功能确认3气缸及操作手柄是否正常4电机传动链条声音是否正常5自动上料系统是否正常6光电感应系统是否正常7自动送料是否到位8手动送料是否正常9放松手柄功能确认10各部位之清洁(含内轴轮)141011121315OK画“O”NG画“X”未作业画“/”不需点检项目画“△”点检点检人审核工务稽查设备每日检查表项目日期收集数据应注意的事项:1.收集的数据必须真实,不可作假或修正.2.收集的数据应能获得层别的情报.3.查检项目基准需一致.4.样本数需有代表性.5.明确测定、检查的方法.6.明确查验样本的收集方法、记录方式、符号代表意义.7.慎用他人提供的数据.层别法:定义:为区别各种不同原因对结果之影响,而以个别原因为主体,分别作统计分析的方法,称为层别法.分类:1.时间的层别.2.作业员的层别.3.机械、设备层别.4.作业条件的层别.5.原材料的层别.6.地区的层别等.实例:序号工序生产数良品数制程不良数制程不良率来料不良率总不良率制程不良项目小计外观不良其它1234512345二指变形大槽变形崩缺压伤尺寸超加工不良混料12345XX产品品质状况日报表日期:班別:机号:特性要因图定义:对于结果与原因间或所期望之效果与对策间的关系,以箭头连结,详细分析原因或对策的一种图形称为特性要因图,工程鱼骨图或因果图.它为1952年日本品管权威学者石川馨博士所发明,又称“石川图”.作法:1.4M1E法:(人、机、料、法、环境)2.5W1H法:(What、Where、When、Who、Why、How)3.创造性思考法:希望点例举法、缺点列举法、特性列案法.4.脑力激荡法:“BrainStorming”严禁批评、自由奔放.特性60°小因子小小因子人机材料方法环境测量使用Minitab制作步骤如下:根据5M1E分析原因依次输入工作表第一步:将数据输入Minitab工作表第二步:选择“StatQualityToolscause-andEffect……”第三步:在出现的对话框输入下图所示信息选择包含因果图相应分枝的原因列表栏改变缺陷分枝标识的缺省设置,缺陷设置为人、机、料、法、环、测量输入因果图对应的问题。输入图形标题表面裂纹EnvironmentMeasurementsMethodsMaterialMachinesPersonnel作业员培训管理人员生产班次定仪刀具速度供应商润滑合金成分制动接合角度检查员显微镜千分表温度湿度表面裂纹因果图分析第四步:MINITAB图形输出如下图柏拉图定义:根据所搜集之数据,按不良原因、不良状况、不良发生位置等不同区分标准,以寻求占最大比率之原因、状况或位置的一种图形.1897年,意大利学者柏拉撬分析社会经济结构,发现绝大多数财富掌握在极少数人手里,称为“柏拉法则”.美国质量专家朱兰博士将其应用到品管上,创出了“VitalFew,TrivialMany”(重要的少数,琐细的多数)的名词,称为“柏拉图原理”.A、将数据进行分类B、分类好的数据进行汇总,以多到少进行排序,并计算出各类别所占百分比C、计算出各类之和D、以总数各为左纵轴,以总数的十分之一为一单格,各个类别为横轴,以每一类别为一单位格,以100%的比例来做右边的纵轴,之间幅度为10%为一单位格,在80%之处画一条横虚线。在横轴上,按多到少的顺序进行每一单位格进行填写,再根据每一类别的数量在画出相应高度的方格,最后从左边第一方格右上角描第一点,第二方格右边上面的第一点高度加本方格高度处描第二点,第三方格右边上面的第二高点高度加本方格高度处描第三点,以此类推,描到最后一点的100%处。作法:注意事项:1.横轴按项目类别,依大小顺序由高而低排列下来,“其它”项排末位.2.次数少的项目太多时,可归纳成“其它”项.(如在柏拉图做出之后,发现有标识成“其它”的类别高度不能超过第4项如有,则表示类别划分不明确。)3.前2~3项累计影响度应在80%以上.4.纵轴除不良率外,也可表示其它项目.ABCDE不良率100%累计影响度项目柏拉图的用途:1.作为降低不良的依据.2.决定改善的目标.3.确认改善效果.4.用于发掘现场的重要问题点.5.用于整理报告或记录.6.可作不同条件的评价.使用Minitab制作步骤如下:第一步:将数据输入Minitab工作表输入不良项目相对应的输入不良数第二步:选择“StatQualityToolsParetoChart”第三步:在出现的对话框输入下图所示信息-1选择包含原始数据的栏如数据输入格式为缺陷名和缺陷频率时选择该项第三步:在出现的对话框输入下图所示信息-2输入图形标题第三步:在出现的对话框输入下图所示信息-3选择”Options”按钮,在出现的对话框选择下图所示信息第四步:MINITAB图形输出如下图散布图定义:为研究两个或三个变量间之相关性,而搜集成对几组数据,在纵轴与横轴上以点来表示二个或三个特性值之间相关情形的图形,称之为“散布图”.关系的分类:A.要因与特性的关系.B.特性与特性的关系.C.特性的两个要因间的关系.1、知道两组或三组数据(或原因与结果)之间是否有相关其相关程度2、把材料、机械设备、作业者、作业方法……等可能影响的原因层别,绘制散布图,可检讨何者影响结果。3、检视是否有离岛情形。4、抽样检验中,若某品质特性之测试成本高或困难,则可采用与此特性有关系存在的另一个或两个测试成本较低或测容易之特性,以降低检验成本。5、以利在以后的品质管制中,若同一制品之二特性间有密切关系时,则可舍去其中一个管制图,以降低预防成本。6、两组数据间若呈直线变化,可依散布图求出直线方程式,以为订定标准之用。散布图的用途:散布图的判读:1.强正相关:X增大,Y也随之增大,称为强正相关.2.弱正相关:X增大,Y也随之增大,但增大的幅度不显著.YXYX3.强负相关:X增大时,Y反而减小,称为强负相关.4.弱负相关:X增大时,Y反而减小,但幅度并不显著.YXYX5.曲线相关:X开始增大时,Y也随之增大,但达到某一值后,当X增大时,Y却减小.6.无相关:X与Y之间毫无任何关系.YXYX………………………………散布图判读注意事项:1.注意有无异常点.2.看是否有层别必要.3.是否为假相关.4.勿依据技术、经验作直觉的判断.5.数据太少,易发生误判.使用Minitab制作步骤如下:第一步:将数据输入Minitab工作表分别输入两特性数据第二步:选择“StatRegressionFittedlineplot”第三步:在出现的对话框输入下图所示信息输入包含响应变量的栏输入包含预测变量的栏选择回归模型选择”Options”按钮,在出现的对话框选择下图所示信息输入图型标题第四步:MINITAB图形输出如下图cmmsmartscope10.710.610.510.410.310.210.110.710.610.510.410.310.210.110.0S0.0728539R-Sq87.7%R-Sq(adj)86.1%smartscope&CMM检测9.5尺寸相关模型smartscope=-0.840+1.077cmmSmartscope&CMM检测9.5尺寸相关分析的结果注意:相关结果分析在90%以上说明两者之间存在关系!!直方图定义:直方图是将所收集的测定值或数据之全距分为几个相等的区间作为横轴,并将各区间内之测定值所出现次数累积而成的面积,用柱子排起来的图形.用来对品质现状了解,找出比较深入的问题。实例数据:10.0510.0510.0510.079.9910.0310109.949.959.989.989.9810.019.9810.01109.999.959.9810.0510.0510.059.999.9810.019.989.9910.029.951010109.9810.011010.029.9610.019.999.999.999.999.9210109.9710.059.9810.031010109.999.9810.0210.011010.039.9810.0110.0110.01109.949.989.9610.029.9510.029.969.969.9610.02101010.05109.969.9510.0110.0110.0110109.9610.029.981010.079.969.969.9610.0610.0410.0910.0610.110.1210.02第一步:找出最大与最小(MIN=9.92,MAX=10.12)第二步:计算全距R=MAX-MIN=10.12-9.92=0.2第三步:决定组数:K=1+3.321㏒100=1+3.32*2=7.64第四步:计算组距组距=全距/组数=0.2/8=0.025第五步:决定起始点值和终点数值起始点值=最小值-测定值最小位数/2=9.92-0.01/2=9.915终点数值=最大值-测定值最小位数/2=10.12-0.01/2=10.115制作步骤:第六步:计算各组上下点和中点第一组下界=起始点值=9.915第一组上界=第二组下界=起始点值+组距=9.915+0.025=9.94第二组上界=第三组下界=第二组下界+组距=9.94+0.025=9.965……第八组上界=终点值=10.115根据各组之上下界计算出各组之中心点:各组中心点=(各组上界+各组下界)/2第七步:计算各组范围内的数据个数第八步:作图数据数组数80~106~10100~2507~12250以上10~20直方图图形判读:1.正常型:2.锯齿型:3.偏态型:4.绝壁型:5.双峰型:6.离岛型:7.高原型:使用Minitab制作步骤如下:第一步:将数据输入Minitab工作表将收集数据输入第二步:选择“GraphHistogram”选择所需直方图的图样第三步:在出现的对话框输入下图所示信息确定需用于图中的变量第三步:在出现的对话框输入下图所示信息第四步:MINITAB图形输出如下图对称图概述:对称图可用于检验一组样本数据是否来自对称分布,许多统计分析要求数据服从正态分布,但实际中常有不服从正态分布的情况,一般来说数据为对称分布即可满足分析要求。使用Minitab制作步骤如下:第一步:将数据输入Minitab工作表将搜集的数据输入第二步:选择“StatQualityToolsSymmetryplot”第三步:在出现的对话框输入下图所示信息输入包含要作图的数据的栏第四步:MINITAB图形输出如下图能力分析---CPK定义:CP是生产过程中的工序能力指数,其值的大小要以反映工序能力的高低,CPK是CP的一个修正值,其关系CPK=CP(1-K),式中K为修正系数,CPK比CP更能说明工序能力的高低.CPK即每个工序达到某种质量水平的能力概述:一旦一个过程处于统计控制状态,既可以连续生产,这时
本文标题:Minitab制作图形方法
链接地址:https://www.777doc.com/doc-412672 .html