您好,欢迎访问三七文档
角度传感器应用摘要对角度传感器进行了研究;分析了不同角度传感器的特性及应用特点。研究了磁敏角度传感器在拉线式位移传感器的设计与应用,倾角传感器的原理、特点。结果表明角度传感器具有无触点、高灵敏度、接近无限转动寿命、无噪声、高重复性、高频响应特性好等特点,且广泛应用于航天、航空、国防、科技和工农业生产等各个领域中。关键词:角度传感器磁敏角度倾角传感器传感器前言在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器)之一。智能传感器已广泛应用于航天、航空、国防、科技和工农业生产等各个领域中。例如,它在机器人领域中有着广阔应用前景,智能传感器使机器人具有类人的五官和大脑功能,可感知各种现象,完成各种动作。在工业生产中,利用传统的传感器无法对某些产品质量指标(例如,黏度、硬度、表面光洁度、成分、颜色及味道等)进行快速直接测量并在线控制。而利用智能传感器可直接测量与产品质量指标有函数关系的生产过程中的某些量(如温度、压力、流量等)。精密角度测量是几何量测量的一个重要项目,也是计量科学中发展较为完备的一个分支,在过去的20年中,角度测量的精度也提高了10倍多。角度测量技术分为静态测量和动态测量两种,某些静态测量技术仍然是动态测量的基础,一些动态测角技术可以实现静态测量。目前,很多重要的测控仪器,如陀螺转台、惯导平台、经纬仪、星体跟踪器、雷达、导弹发射架、空间望远镜、高精度数控机床、机器人等系统中一般都需要角度传感器,用于测量被测物体相对于某基准方位的绝对转角或相对于自身在不同时刻的相对转角。1角度传感器1.1角度传感器的定义角度传感器是指能感受被测角度并转换成可用输出信号的传感器。角度传感器,顾名思义,是用来检测角度的。它的身体中有一个孔,可以配合乐高的轴。当连结到RCX上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0,如果需要,你可以用编程把它重新复位。通过计算旋转的角度可以很容易的测出位置和速度。当在机器人身上连接上轮子(或通过齿轮传动来移动机器人)时,可以依据旋转的角度和轮子圆周数来推断机器人移动的距离。然后就可以把距离转换成速度,你也可以用它除以所用时间。实际上,计算距离的基本方程式为:距离=速度×时间由此可以得到:速度=距离/时间1.2磁敏角度传感器定义及其原理1.2.1磁敏电阻角度传感器磁敏感角度传感器采用高性能集成磁敏感元件,利用磁信号感应非接触的特点,配合微处理器进行智能化信号处理制成的新一代角度传感器。特点:无触点高灵敏度接近无限转动寿命无噪声高重复性高频响应特性好优点:1)磁钢位置未对准自动补偿;2)故障检测功能;3)非接触位置检测功能,是满足苛刻环境应用需求的理想选择。应用领域:1)工业机械、工程机械建筑设备、石化设备、医疗设备、航空航天仪器仪表、国防工业等旋转速度和角度的测量.2)汽车电子脚踩油门角位移,方向盘位置,座椅位置,前大灯位置;3)自动化机器人,运动控制,旋转电机转动和控制.举例:1、DWQ-BZ-A-40-G:工业级标准化电流输出0~40°(±20°)角度传感器2、DWQ-BL-±2V-±30:比例输出正负2V电压输出±30°角度传感器产品选型技术测试指标一、电压比例输出:电气参数除特别说明外,VCC=5V,TA=25℃表2产品型号DWQ-BL参数名称测试条件参数值单位最小典型最大电源电压Vcc4.555.5V消耗电流Is10mA存储温度Ts-40125ºC使用温度TA-2080ºC中点输出VO2.492.502.51V满度输出FSRL2KΩ0.54.5V输出高电压VOHIO=-1mA4.85V输出低电压VOLIO=1mA0.15V中点温漂-20ºCTA80ºC±10mVFS满度温漂-20ºCTA80ºC0.02%/ºCFS分辨率≤0.015o线性度θ=±8º2‰FSθ=±20º3‰FSθ=±30º6‰FSθ=±45º1.5%FSθ=±60º3%FS接线方式红—电源正极黑—电源负极黄—输出信号1.2.2基于磁敏角度技术的拉线式位移传感器的设计与应用传统的拉线式位移传感器采用电位器式位移传感器,它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连,物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,把电阻变化转换为电压输出。传统的拉线式位移传感器由于其电刷移动时电阻以匝电阻为阶梯变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件的时,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。同时,电位器式传感器的另一个主要缺点是易磨损、分辨力差、阻值偏低、高频特性差,从而导致测量精度的下降。它的优点是:结构简单,输出信号大,使用方便,价格低廉。基于磁敏角度技术的拉线式位移传感器以磁场为传输载体,将位移变换转换为磁场角度位移,同时,通过通信接口将位移信号返回给应用系统。1总体设计方案基于磁敏角度技术的拉线式位移传感器的功能是将拉线的机械位移换成可以计量、记录或传送的电信号,主要由自动回复弹簧、轮毂、磁铁以及数据处理单元等部分构成,结构如图2所示。由图2可以看出,该基于磁敏角度技术的拉线式位移传感器主要由6部分组成,改变传统的拉线式位移传感器接触式、易磨损、高频特性差等缺点,基于磁敏角度技术的拉线式位移传感器以磁场为媒介,将机械位移变化转化为磁场角度变化,一方面解决传统拉线位移传感器的接触方式,另一方面减少了磨损、提高了系统高频特性,从而确保位移检测精度。数据处理运算器,用于对接收到的磁敏角度信号通过数学模型运算为拉线的位移信号。通信接口,通过通信接口与应用系统的设备进行通信,接收来自应用系统设备的命令并将采集到的位移信号反馈给应用系统。从而提高了数据采集精度、稳定性和可靠性,降低了位移传感器的应用门槛。各个部件功能描述如下:(1)拉线的钢绳缠绕在轮毂上,轮毂与一个磁铁连接在一起,当拉线产生位移的时候,带动轮毂的转动,轮毂的转动造成与轮毂的轴连接的磁铁转动,从而磁铁的磁场产生一个变化的角度。拉线运动发生的时候,自动回复弹簧确保拉线具备一定的张力,确保拉线的位移与磁敏角度的比例关系。(2)磁敏角度感应器与磁铁安装在同一中心轴,用来感应磁铁角度的变化,选用一种微处理器,该处理器读取磁敏角度信息,并通过建立数学模型,将磁敏角度运算为拉线的位移。(3)通讯接口,微处理器通过通信接口接收来自应用系统的命令并将位移信息通过通信接口返回给应用系统。2硬件接口电路设计数据处理单元由磁敏角度感应器、微处理器单元、通信接口以及输出模块,具体的功能框如图3所示。图3处理单元通过分析图3,磁敏角度感应器选用MLX90316,它将拉线位移所导致的磁铁磁场转动的角度转换为磁敏角度。微处理器单元选用32位嵌入式ARM用于对接收到的磁敏角度数据进行处理,完成磁敏角度数据的接收,由于接收到的是磁场转换的角度,所以通过建立数学模型,结合轮毂的直径等因素,将磁敏角度换算为拉线的位移。因此,为了能够快速地实现数据的接收和模型的建立,此处选用LPC2136作为数据处理单元。输入、输出控制模块负责各种对外接口的处理,如通过通信接口接收来自应用系统的命令,向应用系统返回采集的位移结果,以便能够将微处理器单元能够执行应用系统的命令并将采集结果通过接口安全可靠地发送到应用设备,主要包含1路的RS485和4~20mA的电流输出。(1)磁敏角度接收接口MLX90316是一种线性霍尔芯片,采用了平面霍尔传感技术的单片集成传感芯片,该芯片可以用来测量与芯片表面共面的磁通密度,可以得到从0~360°的旋转位置值,通过多种模式输出准确度很高的线性绝对位置信号,并且成本低廉、安装简便。MLX90316芯片前端是采用Triaxis霍尔技术的传感器。由霍尔传感器得到的二路正交的模拟信号经过放大处理后,经过14位微分型A/D转换器进入芯片微处理器(DSP),再经过16位DSP处理之后的数字信号分3路输出。MLX90316输出具有12位角度分辨率,10位角度精度,并且在一定程度上可以避免外围温度变化对输出精度的影响。MLX90316具有3种输出:由12位D/A转换为模拟量输出;频率为100~1000Hz的PWM输出;数字模式下利用串行通信协议输出(SPI)。由于串行通信的输出信号直接来自于MLX90316的内部DSP输出,SPI输出模式更稳定,误差更小,并且具有更高的抗干扰能力。在本设计中,选用SPI接口,具体的硬件接口连接电路如图4所示。在图4中,MLX90316的SPI三根线与ARMLPC2136的SPl0口连接。SPI(SerialProtocolInterIace)总线接口是一种同步串行外设接口。这是一个4根信号线的串行接口协议,包括主、从两种模式。这4根信号线分别是:时钟线(SCK)、数据输入线(MISO)、数据输出线(MOSI)和从设备使能线(SS)。(2)RS485通信接口电路设计RS485总线以其结构简单、通信速率高、传输距离远等诸多优点,在工业控制系统中得到了广泛应用。它采用平衡发送和差分接收方式实现通信,发送端将串行口的TTL电平信号转换成差分信号A、B两路输出,经过线缆传输之后在接收端将差分信号还原成TTL电平信号。由于传输线通常使用双绞线,又是差分传输,所以又极强的抗共模干扰的能力,总线收发器灵敏度很高。在基于磁敏角度技术的拉线式位移传感器中我们设计了一路RS485信号输出,RS485接口芯片采用MAX3485,用于与应用系统进行位移数据数据交换。为了确保数据通信的可靠性,通信接口采用了光电隔离芯片6N137。(3)可控电流输出接口数据处理单元具备一路可控4~20mA的电流输出,用于现场指示仪表的驱动。具体的连接电路如图5所示。其中PWM2连接ARM的PWM2引脚,PWM信号用于控制光耦的导通与截止,反相器主要用于波形的整定,根据磁敏角度和位移关系,建立数学模型,计算出PWM的占空比,从而达到电流大小调节的目的。3软件设计在LPC2136中嵌入了μC/OS-Ⅱ操作系统。μC/OS-Ⅱ是一种基于优先级的抢占式多任务实时操作系统,包含了实时内核、任务管理、时间管理、任务间通信同步(信号量,邮箱,消息队列)和内存管理等功能。它可以使各个任务独立工作,互不干涉,很容易实现准时而且无误执行,使实时应用程序的设计和扩展变得容易,使应用程序的设计过程大为减化。软件编程主要包含3个模块:PWM控制电流输出模块、RS485通信模块、MLX90316的SPI通信模块,编程流程如图5所示。PWM控制电流输出模块主要通过改变PWM的占空比来调节电流的大小。RS485通信模块主要用来接收上层系统的指令并根据指令将数据回传。MLX90316的SPI通信模块主要用于磁敏角度的读取,SPI的通讯过程为:主控端先输出1个0xAA以及1个0xFF作为通信起始信号,然后接着输出8个0xFF,而从端会同时输出2个0xFF、4个字节的角度信号以及4个0xFF,从而完成一次数据通讯。利用MLX90316构建位置传感器需要使用磁铁,在传感位置安装活动的机械部件(通常连接在轴的末端)。只要水平磁通量均匀的磁铁都可以使用。磁铁
本文标题:59传感器论文
链接地址:https://www.777doc.com/doc-4164565 .html