您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 浙江大学《微观经济学教程》习题答案
1第二章价格机制三、计算题1.(1)=4Q,80P(2)新的需求函数为:P=100-5(Q+15)=175-5Q(3)新的供给函数为:401015=10110PQQ()(4)新的均衡数量与均衡价格分别为:'=19Q,'=80P(5)比较(1)和(4)中的均衡结果可得,均衡价格没有发生变化,均衡的产量增加。2.(1)均衡价格与均衡数量分别是:5P,75Q(2)在设定最高平均月租金100美元的情况下,市场将出现供不应求。人口减少为(9555)3120万人(3)在设定900美元月租金的情况下,市场出现供过于求。505505995sQP故新建的住房数量为(9575)50%10万间3.(1)在所有消费者和生产者同质的情况下,市场需求函数和市场供给函数分别是单个需求函数与供给函数的加总。1000010000(122)DdQQP100020000SsQQP(2)由供求均衡解得:3P,60000Q(3)征2美元的销售税后,新的供给函数变为20000(2)SQP新的均衡价格与数量为:4P,40000Q实际上,每件商品由消费者和生产者各承担1美元税收。政府征收的税额为40000280000美元。(4)当政府对每单位产品进行1美元的补贴时,新的供给函数变为20000(1)SQP,新的均衡价格与数量为:2.5P,70000Q这样每单位产品中相当于消费者和生产者各获得了0.5美元的补贴。4.需求弹性为:2(100)DdQPPPEdPQQ当P=40时,Q=3600,从而43DE当P=60时,Q=1200,从而3DE5.(1)P=2和P=4之间的弧弹性为1212()/21.5()/2DPPQEPQQ(2)点弹性计算公式为100DdQPPEdPQQ当P=2时23DE当P=4时4DE6.(1)15Pe,70Qe2(2)在均衡点,供给弹性为:P67SSdQeEdPQe需求弹性为:37DDdQPeEdPQe7.根据交叉弹性公式:1212()/2()/2XYYXYYXXQPPEPQQ,将0.8XYE,110YP,28.5YP,112XQ代入上式,可求得210.538XQ,故乘火车的人数减少了1.462万人。8.根据需求函数和供给函数得,均衡价格和均衡的产量分别为8Pe和14Qe。当初始产量为20时,出现供过于求的状况,在第一年,价格会下降至P=5,达到供求相等。第二年,生产者根据第一年的价格P=5做出的生产决策为Q=5,此时出现供不应求,价格上升至P=12.5,供求达到相等。根据已知条件,可知道需求曲线的斜率的绝对值为12,大于供给曲线的斜率13,因此,这个蛛网模型是发散的,不可能达到均衡。第三章消费者行为三、计算题1.根据效用最大化的条件:购买的每种商品的边际效用与其价格之比相等,及消费者恰好花花完其收入,可以求出该人效用最大化时,购买4瓶啤酒,2瓶葡萄酒和1瓶苏打水。2.(1)边际替代率2XXYYMUMRSMUX,故当X=1时,边际替代率=2XYMRS。(2)X消费9单位和Y消费8单位时,总效用420UXY,所以,当X的消费量减少到4单位时,若要达到总效用20,则Y=123.(1)实现效用最大化时,X=30,Y=15。(2)货币的边际效用为:==7.5XYXYMUMUPP总效用为:=450UXY(3)收入增加24才能保持原来的总效用水平。4.(1)X和Y的需求函数分别为:3XMXP,23YMYP(2)商品X和Y的需求的点价格弹性分别为:()()=1DDEXEY5.(1)价格为1P时,消费者剩余为:1211101()()2abPaQdQabPPabPbb(2)由(1)中结论得,当价格从1P变化到2P时,消费者剩余的变化为22211()()2abPabPb36.(1)①根据已知条件,在=UXY,1XP,2YP,40M的条件下,求解出效用最大化的购买量:X=20,Y=10,总效用U=200。②同样,在YP发生变化后,在=UXY,1XP,1YP,40M的条件下,求出效用最大化的购买量为:X=20,Y=20,总效用U=400。③在U=XY=200,1XP,1YP的条件下,可求出效用最大化的购买量:X=102,Y=102,相应的收入M=202。④故YP下降的替代效应使该消费者购买更多的Y,10210Y;同时替代效应使他买更少的X,10220X(为负数)。(2)YP下降的收入效应使该消费者购买更多的X,20102X(3)YP下降对X商品的总需求效应为0,对Y的总需求效应为10。第四章生产者行为三、计算题1.(1)在此C-D生产函数当中,L的产出弹性为0.5,K的产出弹性为0.5,其和为1,故该生产过程处于规模报酬不变阶段。证明如下:设1,0..50.50.50.5(,)()()fKLLKLKQ即产量与所有要素同比例扩大,该生产过程处于规模报酬不变阶段。(2)根据已知生产函数得0.50.50.50dQLKdL21.50.520.250QLKL0.50.50.50dQLKdK20.51.520.250QLKK故保持L不变时,K的变化满足边际收益递减;同样保持K不变,L的变化也满足边际收益递减。因此该生产过程受边际收益递减规律的支配。2.(1)当K=10时,劳动的平均产量函数为:2320.50.32100.5LQKAPKLLLLL劳动的边际产量函数为:10LQMPKLLL(2)总产量达到极大值时,L=10;平均产量达到极大值时,L=8由于10LMPL,故边际产量要到达极大值时,L=0(3)结合(1)与(2)中结论得:L=8时LAP达到极大值,并且有32100.52LAPLL,102LMPL即当LAP达到极大值,LLAPMP。3.(1)(图略)(2)劳动L对资本K的边际技术替代率为:2482LLKKMPKKKMRTSLMPLKL4(3)劳动的平均产量函数为:24LQAPKL劳动的边际产量函数为:24LQMPKL4.K=100,L=200,Q=1002。5.(1)当两个公司使用同样多的劳动和资本时,两公司产量比为0.10.50.50.60.41010DFQKLLQKLK,所以,当1DFQQ时,DISK公司的产量高,此时LK,即投入的劳动时间大于资本时间;当1DFQQ时,DISK和FLOPPY公司的产量一样,此时LK,即投入的劳动时间等于资本时间;当1DFQQ时,FLOPPY公司的产量高,此时LK,即投入的劳动时间小于资本时间。(2)可求得两家公司的劳动边际产量之比为0.10.50.50.60.6()55()44LLMPDKLLMPFKLK,当K=9时,10495L时,DISK公司的劳动边际产出大;10495L时,两家公司劳动的边际产出相同;10495L时,FLOPPY公司劳动的边际产出大。6.(红色为原题目中已知数据)QTFCSTCTVCAFCAVCSACSMC01201200————11201806012060180602120200806040100203120210904030701041202251053026.2556.25155120260140242852356120330210203555707.设成本函数为(,,)KLCCPPQ,则产量为Q时的利润最大化条件为:QKL且LKLKMPMPPP,从而可解出:,LKKLQPQPKLPP代入等成本方程KLCPKPL,可求出成本函数为:2KLCPPQ58.总固定成本为:TFC=200+400+50=650平均可变成本为:AVC=(500+750+100)/100=13.59.1000255010TFCQACAVC10.(1)成本函数中的可变部分为321017QQQ,不可变部分为66。(2)32()1017TVCQQQQ266()1017SACQQQQ2()1017AVCQQQ66()AFCQQ2()32017SMCQQQ(3)当()0dAVCQdQ时,求得使平均可变成本最小的Q为5。(但此时AVC=-8)11.(1)Q=1500,P=150(2)89250第五章完全竞争的产品市场三、计算题1.书中原题目有错,需求函数应改为:D=-400P+4000(1)单个厂商的短期供给曲线即为SMC曲线:0.21iPq(2)行业的短期供给曲线为所有单个厂商短期供给曲线的水平加总:500500QP(3)市场均衡价格和产量分别为:P=5,Q=2000(4)征税后,行业供给函数为:500(0.9)500QP,而需求函数仍然是:4004000QP,故求得均衡产量与价格分别为:Q=1800,P=5.5征税后,均衡产量减少200,均衡价格上升0.5。每单位产品所征的0.9元税中,消费负担了0.5元,生产者负担了0.4元。2.(1)厂商的短期边际成本函数为:20.121.610dCSMCqqdq故当P=10时,由利润最大化条件P=SMC,可求得厂商的短期均衡产量为:403q,进一步求得利润为:114527pqSTC(2)厂商的平均可变成本函数为:20.040.810AVCqq6当minSMCAVC时,求得停止营业点的产量为:10q此时价格为P=SMC=6,即当价格下降到6以下时,厂商必须停产。(3)厂商的短期供给曲线为SMC曲线在10q部分,所以厂商的短期供给函数为:20.121.610(10)Pqqq3.由MRMC,即200.412q,求得均衡产量:80q再由边际成本函数可求得总成本函数为:20.212STCqqTFC已知当q=10时,STC=100,代入总成本函数,得TFC=200,从而20.212200STCqq,利润为:1080TRSTC4.(1)厂商长期平均成本的最小值即为长期均衡价格即:3P根据市场需求函数得市场均衡产量为:2000000Q由于均衡时每个厂商的产量为1000,故市场上总共有2000个厂商。(2)当短期内需求函数变为3200000200000QdP时,2000000Qs,所以,短期内新的均衡价格为:P=6,单个厂商的利润为:1000(63)3000(3)给定(2)的需求状况,长期中,由于成本不变,厂商均衡的价格和产量仍然为:q=1000,p=3市场均衡数量:Q=2600000,厂商数量为2600。5.(1)根据厂商的长期总成本函数可推导出厂商的长期边际成本为:2388LMCqq,厂商的长期平均成本为:248LACqq由PLMCLAC求得长期市场均衡价格和单一厂商的产量分别为:4,2Pq长期中,市场上若存在N个厂商,则有市场均衡数量2QNqN(2)由20001002,4QdPNP,可得行业均衡价格、均衡数量和厂商数分别为:4,1600,800PQN6.将题中产品单价由640元改为“400元”。(1)这个厂商在追求利润最大化时满足PMC由TC函数可得2403MCqq,已知P=400,故可求得利润最大化时产量为:20q该产量上的平均成本为:TCACq1200总利润为:pqTC5600(2)因为代表性厂家在实现长期均衡时的总利润为零,而此时其利润不为零,故这一行业没有处于长期均衡状态。(3)当处于长期均衡状态时,应满足PLMCLAC,求得均衡时的产量和价格为:,qPLAC7.(1)6,7.5qP(2)行业的长期均衡产量为:60002004500QP(3)该行业长期均衡时候的数量为:750N7(4)①当600N时,600
本文标题:浙江大学《微观经济学教程》习题答案
链接地址:https://www.777doc.com/doc-4215703 .html