您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 北师大版高中数学选修2-2第四章《定积分》定积分的概念-课件(1)
观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.学习目标:当分割点无限增多时,小矩形的面积和=曲边梯形的面积求由连续曲线y=f(x)对应的曲边梯形面积的方法(2)取近似求和:任取xi[xi-1,xi],第i个小曲边梯形的面积用高为f(xi)而宽为Dx的小矩形面积f(xi)Dx近似之。(3)取极限:,所求曲边梯形的面积S为取n个小矩形面积的和作为曲边梯形面积S的近似值:xiy=f(x)xyObaxi+1xixD1lim()niniSfxx==D1()niiSfxx=D(1)分割:在区间[0,1]上等间隔地插入n-1个点,将它等分成n个小区间:每个小区间宽度△xban-=11211,,,,,,,,,iinaxxxxxxb--(一)、定积分的定义11()()nniiiibafxfnxx==-D=小矩形面积和S=如果当n∞时,S的无限接近某个常数,这个常数为函数f(x)在区间[a,b]上的定积分,记作baf(x)dx,即baf(x)dx==ni10limf(xi)Dxi。从求曲边梯形面积S的过程中可以看出,通过“四步曲”:分割---近似代替----求和------取极限得到解决.1()lim()ninibafxdxfnx=-=ba即定积分的概念一般地,设函数()fx在区间[,]ab上连续,用分点0121iinaxxxxxxb-==将区间[,]ab等分成n个小区间,每个小区间长度为xD(baxn-D=),在每个小区间1,iixx-上取一点1,2,,iinx=,作和式:11()()nnniiiibaSfxfnxx==-=D=如果xD无限接近于0(亦即n)时,上述和式nS无限趋近于常数S,那么称该常数S为函数()fx在区间[,]ab上的定积分。记为:()baSfxdx=定积分的定义:定积分的相关名称:———叫做积分号,f(x)——叫做被积函数,f(x)dx—叫做被积表达式,x———叫做积分变量,a———叫做积分下限,b———叫做积分上限,[a,b]—叫做积分区间。1()lim()ninibafxdxfnx=-=ba即Oabxy)(xfy===baIdxxf)(1lim()niinifxx=D被积函数被积表达式积分变量积分下限积分上限baf(x)dx=baf(t)dt=baf(u)du。说明:(1)定积分是一个数值,它只与被积函数及积分区间有关,而与积分变量的记法无关,即(2)定义中区间的分法和xi的取法是任意的.baf(x)dx=baf(x)dx-(3)(二)、定积分的几何意义:Oxyaby=f(x)baf(x)dx=caf(x)dxbcf(x)dx。x=a、x=b与x轴所围成的曲边梯形的面积。当f(x)0时,积分dxxfba)(在几何上表示由y=f(x)、特别地,当a=b时,有baf(x)dx=0。当f(x)0时,由y=f(x)、x=a、x=b与x轴所围成的曲边梯形位于x轴的下方,xyOdxxfSba)]([-==-,dxxfba)(.aby=f(x)y=-f(x)dxxfSba)]([-=baf(x)dx=caf(x)dxbcf(x)dx。=-S上述曲边梯形面积的负值。定积分的几何意义:积分baf(x)dx在几何上表示baf(x)dx=caf(x)dxbcf(x)dx。=-Saby=f(x)Oxy()ygx=探究:根据定积分的几何意义,如何用定积分表示图中阴影部分的面积?aby=f(x)Oxy1()baSfxdx=()ygx=12()()bbaaSSSfxdxgxdx=-=-2()baSgxdx=(三)、定积分的基本性质性质1.dx)]x(g)x(f[ba=babadx)x(gdx)x(f性质2.badx)x(kf=badx)x(fk三:定积分的基本性质定积分关于积分区间具有可加性=bccabadx)x(fdx)x(fdx)x(f性质3.=2121ccbccabadx)x(fdx)x(fdx)x(fdx)x(f思考:从定积分的几何意义解释性质⑶aby=f(x)baf(x)dx=caf(x)dxbcf(x)dx。baf(x)dx=caf(x)dxbcf(x)dx。baf(x)dx=caf(x)dxbcf(x)dx。cOxy例1:利用定积分的定义,计算130xdx的值。解:1分割:在区间0,1上等间隔地插入1n-个点,将区间0,1等分成n个小区间,记第i个区间为1,(1,2,,)iiinnn-=,其长度为11iixnnn-D=-=。2近似代替,求和取(1,2,...)iiinn==则1301()nniixdxSfxn==D332224411111111()(1)(1)44nniiiinnnnnnn======3取极限1320111limlim(1)44nnnxdxSn===练习:利用定积分计算:dx230x例2:计算定积分dx120(2x-x)练习:用定积分表示抛物线y=x2-2x+3与直线y=x+3所围成的图形面积dxdx33200x+3x-x+3-dx=320-x+3x(四)、小结1.定积分的实质:特殊和式的逼近值.2.定积分的思想和方法:分割化整为零求和积零为整取逼近精确值——定积分求近似以直(不变)代曲(变)取逼近3.定积分的几何意义及简单应用(五).布置作业:课本P81页习题4-1A组4、5B组2五、教学后记:
本文标题:北师大版高中数学选修2-2第四章《定积分》定积分的概念-课件(1)
链接地址:https://www.777doc.com/doc-4238732 .html