您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 八年级不等式培优提高练习
不等式培优提高练习题第1页(共6页)1.若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.aB.C.﹣2D.﹣22.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是()A.x>B.x<﹣C.x>﹣D.x<3.若不等式(ax﹣1)(x+2)>0的解集是﹣3<x<﹣2,那么a等于()A.B.C.3D.一34.不等式的解集为x>2,则m的值为()A.4B.2C.D.5.若关于x的不等式组的整数解共有3个,则m的取值范围是()A.5<m≤6B.5≤m<6C.5≤m≤6D.5<m<66.已知a>b,c≠0,则下列关系一定成立的是()A.ac>bcB.C.c﹣a>c﹣bD.c+a>c+b7.下列命题中:①如果a<b,那么ac2<bc2;②关于x的不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a<1;③若是自然数,则满足条件的正整数x有4个.正确的命题个数是()A.0B.1C.2D.38.若x是方程2x+m﹣3(m﹣1)=1+x的解为负数,则m的取值范围是()A.m>﹣1B.m<﹣1C.m>1D.m<19.按下面的程序计算:不等式培优提高练习题第2页(共6页)若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种10.若x为任意实数时,二次三项式x2﹣6x+c的值都不小于0,则常数c满足的条件是()A.c≥0B.c≥9C.c>0D.c>911.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<212.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥313.已知△ABC的边长分别为2x+1,3x,5,则△ABC的周长L的取值范围是()A.6<L<36B.10<L≤11C.11≤L<36D.10<L<3614.已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1B.p<1C.p<﹣1D.p>115.关于x的不等式组的解集是x>﹣1,则m=.16.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于.17.已知关于x、y的二元一次方程组的解满足x+y>2,则k的取值范围是.18.若不等式组有解,那么a必须满足.19.已知a、b都是实数,且a=,b=,b<<2a,那么实数x的取值范围是.不等式培优提高练习题第3页(共6页)20.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.21.关于x的不等式x﹣3>的解集在数轴上表示如图所示,则a的值是.22.已知关于x的分式方程的解为负数,那么字母a的取值范围是.23.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.24.x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?不等式培优提高练习题第4页(共6页)25.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.26.已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x<,求m的取值范围;(2)若它的解集是x>,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.27.用等号或不等号填空:(1)比较4m与m2+4的大小当m=3时,4mm2+4当m=2时,4mm2+4当m=﹣3时,4mm2+4(2)无论取什么值,4m与m2+4总有这样的大小关系吗?试说明理由.(3)比较x2+2与2x2+4x+6的大小关系,并说明理由.(4)比较2x+3与﹣3x﹣7的大小关系.不等式培优提高练习题第5页(共6页)28.是否存在整数m,使关于x的不等式1+>+与关于x的不等式x+1>的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.29.已知关于x的不等式(2a﹣b)x+a﹣5b>0的解集为x<,(1)求的值.(2)求关于x的不等式ax>b的解集.30.若不等式组的偶数解a满足方程组,求x2+y2的值.31.小明把三个数﹣1,2﹣a,在数轴上从左到右依次排列在三个对应点上,你能确定a的取值范围吗?请写出你的解答过程.32.阅读下面的例题,并回答问题.不等式培优提高练习题第6页(共6页)【例题】解一元二次不等式:x2﹣2x﹣8>0.解:对x2﹣2x﹣8分解因式,得x2﹣2x﹣8=(x﹣1)2﹣9=(x﹣1)2﹣32=(x+2)(x﹣4),∴(x+2)(x﹣4)>0.由“两实数相乘,同号得正,异号得负”,可得①或②解①得x>4;解②得x<﹣2.故x2﹣2x﹣8>0的解集是x>4或x<﹣2.(1)直接写出x2﹣9>0的解是;(2)仿照例题的解法解不等式:x2+4x﹣21<0;(3)求分式不等式:≤0的解集.
本文标题:八年级不等式培优提高练习
链接地址:https://www.777doc.com/doc-4337773 .html