您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中导数题的解题技巧
选校网专业大全历年分数线上万张大学图片大学视频院校库导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用.【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【例题解析】考点1导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.(2006年辽宁卷)与方程221(0)xxyeex的曲线关于直线yx对称的曲线的方程为A.ln(1)yxB.ln(1)yxC.ln(1)yxD.ln(1)yx[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力[解答过程]2221(0)(1)xxxyeexey,0,1xxe,即:1ln(1)xeyxy,所以1()ln(1)fxx.故选A.例2.(2006年湖南卷)设函数()1xafxx,集合M={|()0}xfx,P='{|()0}xfx,若MP,则实数a的取值范围是()A.(-∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.[解答过程]由0,,1;,1.1xaxaaxx当a1时当a1时//2211,0.11111.xxaxaxaayyxxxxa综上可得MP时,1.a考点2曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.(2004年重庆卷)已知曲线y=31x3+34,则过点P(2,4)的切线方程是_____________.思路启迪:求导来求得切线斜率.解答过程:y′=x2,当x=2时,y′=4.∴切线的斜率为4.∴切线的方程为y-4=4(x-2),即y=4x-4.答案:4x-y-4=0.例4.(2006年安徽卷)若曲线4yx的一条切线l与直线480xy垂直,则l的方程为()A.430xyB.450xy选校网.430xyD.430xy[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480xy垂直的直线l为40xym,即4yx在某一点的导数为4,而34yx,所以4yx在(1,1)处导数为4,此点的切线为430xy.故选A.例5.(2006年重庆卷)过坐标原点且与x2+y2-4x+2y+25=0相切的直线的方程为()A.y=-3x或y=31xB.y=-3x或y=-31xC.y=-3x或y=-31xD.y=3x或y=31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.[解答过程]解法1:设切线的方程为,0.ykxkxy又22521,2,1.2xy圆心为222151,3830.,3.231kkkkkk1,3.3yxyx或故选A.解法2:由解法1知切点坐标为1331(,),,,2222由//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3xxxxxxxyxyyxyykykyyxyx故选A.例6.已知两抛物线axyCxxyC2221:,2:,a取何值时1C,2C有且只有一条公切线,求出此时公切线的方程.思路启迪:先对axyCxxyC2221:,2:求导数.解答过程:函数xxy22的导数为22'xy,曲线1C在点P(12112,xxx)处的切线方程为))(2(2)2(11121xxxxxy,即211)1(2xxxy①曲线1C在点Q),(222axx的切线方程是)(2)(222xxxaxy即axxxy2222②若直线l是过点P点和Q点的公切线,则①式和②式都是l的方程,故得1,1222121xxxx,消去2x得方程,0122121axx选校网专业大全历年分数线上万张大学图片大学视频院校库若△=0)1(244a,即21a时,解得211x,此时点P、Q重合.∴当时21a,1C和2C有且只有一条公切线,由①式得公切线方程为14yx.考点3导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1..求函数的解析式;2.求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7.(2006年天津卷)函数)(xf的定义域为开区间),(ba,导函数)(xf在),(ba内的图象如图所示,则函数)(xf在开区间),(ba内有极小值点()A.1个B.2个C.3个D.4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力.[解答过程]由图象可见,在区间(,0)a内的图象上有一个极小值点.故选A.例8.设yfx()为三次函数,且图象关于原点对称,当x12时,fx()的极小值为1,求出函数fx()的解析式.思路启迪:先设fxaxbxcxda()()320,再利用图象关于原点对称确定系数.解答过程:设fxaxbxcxda()()320,因为其图象关于原点对称,即fx()fx(),得axbxcxdaxbxcxdbdfxaxcx3232300,,,即()由fxaxc'()32,依题意,fac'()12340,fac()121821,解之,得ac43,.故所求函数的解析式为fxxx()433.例9.函数yxx243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。解答过程:由24030xx得,x2,即函数的定义域为[,)2.yxxxxxx'12412323242243,又2324282324xxxxx,当x2时,y'0,函数yxx243在(,)2上是增函数,而f()21,yxx243的值域是[,)1.abxy)(xfy?Oabxy)(xfy?O选校网.(2006年天津卷)已知函数cos163cos3423xxxf,其中,Rx为参数,且20.(1)当时0cos,判断函数xf是否有极值;(2)要使函数()fx的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数xf在区间aa,12内都是增函数,求实数a的取值范围.[考查目的]本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.[解答过程](Ⅰ)当cos0时,3()4fxx,则()fx在(,)内是增函数,故无极值.(Ⅱ)2'()126cosfxxx,令'()0fx,得12cos0,2xx.由(Ⅰ),只需分下面两种情况讨论.①当cos0时,随x的变化'()fx的符号及()fx的变化情况如下表:x(,0)0cos(0,)2cos2cos(,)2'()fx+0-0+()fx↗极大值↘极小值↗因此,函数()fx在cos2x处取得极小值cosf()2,且3cos13()cos2416f.要使cos()02f,必有213cos(cos)044,可得30cos2.由于30cos2,故3116226或.②当时cos0,随x的变化,'()fx的符号及()fx的变化情况如下表:xcos(,)2cos2cos(,0)20(0,)'()fx+0-0+()fx极大值极小值因此,函数()0fxx在处取得极小值(0)f,且3(0)cos.16f若(0)0f,则cos0.矛盾.所以当cos0时,()fx的极小值不会大于零.综上,要使函数()fx在(,)内的极小值大于零,参数的取值范围为311(,)(,)6226.(III)解:由(II)知,函数()fx在区间(,)与cos(,)2内都是增函数。由题设,函数()(21,)fxaa在内是增函数,则a须满足不等式组210aaa或21121cos2aaa由(II),参数时311(,)(,)6226时,30cos2.要使不等式121cos2a关于参数恒成立,必有3214a,即438a.选校网专业大全历年分数线上万张大学图片大学视频院校库综上,解得0a或4318a.所以a的取值范围是43(,0)[,1)8.例11.(2006年山东卷)设函数f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的单调区间.[考查目的]本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力[解答过程]由已知得函数()fx的定义域为(1,),且'1()(1),1axfxax(1)当10a时,'()0,fx函数()fx在(1,)上单调递减,(2)当0a时,由'()0,fx解得1.xa'()fx、()fx随x的变化情况如下表x1(1,)a1a1(,)a'()fx—0+()fx极小值从上表可知当1(1,)xa时,'()0,fx函数()fx在1(1,)a上单调递减.当1(,)xa时,'()0,fx函数()fx在1(,)a上单调递增.综上所述:当10a时,函数()fx在(1,)上单调递减.当0a时,函数()fx在1(1,)a上单调递减,函数()fx在1(,
本文标题:高中导数题的解题技巧
链接地址:https://www.777doc.com/doc-4343325 .html