您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 28--定积分的分部积分法
1定积分第五章2笫四节定积分的分部积分法)(.2.1重点,难点定积分的分部积分法本定理定积分的分部积分法基主要内容:3一.定积分的分部积分法法中有定理:在不定积分的分部积分dxxuxvxvxudxxvxu)()()()()()(我们有定理:对定积分的分部积分法:理定积分的分部积分法定定理)(式:均为可微函数,在有公设)(),(xvxudxxuxvxvxudxxvxubababa)()()()()()(的确定原则:中分部积分:vudxuvuvdxvubababa,.vu后,先“反对幂指三”的顺序..对数函数“对”反三角函数“反”..指数函数“指”幂函数“幂”.三角函数“三”5基本类型及分部方式:dxeaxPdxexPbaxbanbabaxn]1)[()()1(dxbaxaxPdxbaxxPbanban])sin(1)[()cos()()2(dxbaxaxPdxbaxxPbanban])cos(1)[()sin()()3(其中为n次多项式)(xPndxxxFxdxxfbabaln)(ln)()4(dxxxFxdxxfbabaarctan)(arctan)()5(6dxxxFxdxxfbabaarcsin)(arcsin)()7(dxxarcxFxdxarcxfbabacot)(cot)()6(dxxxFxdxxfbabaarccos)(arccos)()8(其中为的原函数)(xF)(xf例1求下列函数的积分exdxx12ln)1(0sin)2(xdxx210arcsin)3(xdx710arctan)4(xdxxdxxxxxxdxxeee)(ln3ln3ln)3(原式)1(131313解:912)9(3333133123exedxxeee000))(cos(cos)cos(式原)2(dxxxxxdxxx)sin(cos00xxdx0sin2式原5xdx中的结论:或用上一节例])cos[20x(8])1[(1211221022102xdxxx)231(12dxxxxarcxxdxx)(arctan2tan2arctan)2(原式)4(102102102dxxdxxx]111[2181218102102242]arctan[21810xx210210210)(arcsinsinarcsin)(原式)3(dxxxxxarcxdxx9102arctan)21(原式))(4(xdxxII方法dxxxxarcx)(arctan21tan21102102dx1021442214例2计算badxxx)1ln(22badxxx)1ln()1(22解:原式dxxxxxbaba])1[ln()1()1ln()1(2222例3计算.40dxexdxex40,tx2txtdtdx2202tdtet202tetd202022dtetett)2(4202tee)1(2422ee.222e解设dxxaabbba2)1ln()1()1ln()1(2222)()1ln()1()1ln()1(22222baxaabb)()1ln()1()1ln()1(222222abaabbdxxx102)1ln(4:计算定积分例dxxxx)1ln()(102解:原式dxxxxxxx])1[ln()1ln(102102)1()12ln(1)12ln(102102xdxxx12)12ln(dxx102)1ln(5:计算定积分例dxxx)1ln()(210解:原式dxxxxx])1[ln()1ln(1021021022102211)1(22ln122lndxxxdxxx]11[22ln10210dxxdx222ln)](arctan1[22ln10x13例6计算解102d)2()1ln(xxx10)1ln(x2ln10))2ln()1ln((312lnxx2ln31原式=dx21102)1ln(xxxxxd112110xd10xx211131160220220221dcosdsinIIxxxx特别:4d2120x024204204214343dcosdsinIIIxxxx163d8320x1357207207325476547676dcosdsinIIIIxxxx110548dsin1054820xx10548例8求22204dxxx解2sin,xt令原式242016(sinsin)dttt13116()224222cost24sint02ttxdcos2d2cosdtt.)(1642II课后练习习题53P253)1,5,7.19
本文标题:28--定积分的分部积分法
链接地址:https://www.777doc.com/doc-4375030 .html