您好,欢迎访问三七文档
§2.2时间序列平稳性和单位根检验StationaryTimeSerialandUnitRootTest一、时间序列的平稳性二、单整序列三、单位根检验•经典时间序列分析模型:–包括MA、AR、ARMA模型–平稳时间序列模型–分析时间序列自身的变化规律•现代时间序列分析模型:–分析时间序列之间的结构关系–单位根检验、协整检验是核心内容–现代宏观计量经济学的主要内容一、时间序列的平稳性StationaryTimeSeries⒈问题的提出•经典计量经济模型常用到的数据有:–时间序列数据(time-seriesdata);–截面数据(cross-sectionaldata)–平行/面板数据(paneldata/time-seriescross-sectiondata)•时间序列数据是最常见,也是最常用到的数据。•经典回归分析暗含着一个重要假设:数据是平稳的。•数据非平稳,大样本下的统计推断基础——“一致性”要求——被破怀。•数据非平稳,往往导致出现“虚假回归”(SpuriousRegression)问题。–表现为两个本来没有任何因果关系的变量,却有很高的相关性。–例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。2、平稳性的定义•假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,…)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:–均值E(Xt)=是与时间t无关的常数;–方差Var(Xt)=2是与时间t无关的常数;–协方差Cov(Xt,Xt+k)=k是只与时期间隔k有关,与时间t无关的常数;•则称该随机时间序列是平稳的(stationary),而该随机过程是一个平稳随机过程(stationarystochasticprocess)。宽平稳、广义平稳白噪声(whitenoise)过程是平稳的:Xt=t,t~N(0,2)•随机游走(randomwalk)过程是非平稳的:Xt=Xt-1+t,t~N(0,2)Var(Xt)=t2•随机游走的一阶差分(firstdifference)是平稳的:Xt=Xt-Xt-1=t,t~N(0,2)•如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。根据定义判断平稳性平稳性的图示判断均值是否随时间变化(时序图呈趋势性变化)?方差是否随时间变化(时序图呈跳跃性变化)?协方差是否随时间变化(自相关函数大幅度变化)?认识数据特征:随机游走---例2.2.1eviews操作实验Wfcreate(wf=suiji,page=page1)u1000Smpl11000Seriesu=@nrndgenrx(0)=0Smpl21000Genrx=x(-1)+uSmpl@allx.line扩展实验①x=0.5*x(-1)+u②x=1+0.5*x(-1)+u③x=1.5*x(-1)+u④x=1+1.5*x(-1)+u⑤x=1+t+1.5*x(-1)+uSeriest=@trend(1)3000,5000,10000二、单整、趋势平稳与差分平稳1、单整(integratedSerial)•如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integratedof1)序列,记为I(1)。•一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d阶单整(integratedofd)序列,记为I(d)。–例如上述带截距项的随机游走序列,即为I(1)序列。•I(0)代表一平稳时间序列。•现实经济生活中只有少数经济指标的时间序列表现为平稳的,如利率等;•大多数指标的时间序列是非平稳的,例如,以当年价表示的消费额、收入等常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。•大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。•但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种序列被称为非单整的(non-integrated)。2、趋势平稳与差分平稳随机过程•含有一阶自回归的随机过程:–如果ρ=1,β=0,Xt成为一带位移的随机游走过程。根据α的正负,Xt表现出明显的上升或下降趋势。这种趋势称为随机性趋势(stochastictrend)。–如果ρ=0,β≠0,Xt成为一带时间趋势的随机变化过程。根据β的正负,Xt表现出明显的上升或下降趋势。这种趋势称为确定性趋势(deterministictrend)。–如果ρ=1,β≠0,则Xt包含有确定性与随机性两种趋势。tttXtX1•判断一个非平稳时间序列的趋势是随机性的还是确定性的,可通过ADF检验中所用的第3个模型进行。–该模型中已引入了表示确定性趋势的时间变量,即分离出了确定性趋势的影响。–如果检验结果表明所给时间序列有单位根,且时间变量前的参数显著为零,则该序列显示出随机性趋势;–如果没有单位根,且时间变量前的参数显著地异于零,则该序列显示出确定性趋势。随机性趋势(stochastictrend)差分平稳过程趋势平稳过程•差分平稳过程和趋势平稳过程–具有随机性趋势的时间序列通过差分的方法消除随机性趋势。该时间序列称为差分平稳过程(differencestationaryprocess);–具有确定性趋势的时间序列通过除去趋势项消除确定性趋势。该时间序列称为趋势平稳过程(trendstationaryprocess)。三、平稳性的单位根检验(unitroottest)1、DF检验(Dicky-FullerTest)•通过上式判断Xt是否有单位根,就是时间序列平稳性的单位根检验。tttXX1tttXX1tttttXXX11)1(随机游走,非平稳对该式回归,如果确实发现ρ=1,则称随机变量Xt有一个单位根。等价于通过该式判断是否存在δ=0。•一般检验模型tttXX1tttXX1零假设H0:=0备择假设H1:0可通过OLS法下的t检验完成。但是,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t检验无法使用。•Dicky和Fuller于1976年提出了这一情形下t统计量服从的分布(这时的t统计量称为统计量),即DF分布。•迪基-富勒使用蒙特卡罗仿真实验计算了统计量极限分布的临界值,麦金农(MacKinnon)计算了更为全面的极限分布临界值表,常用的计量软件都带有。•由于t统计量的向下偏倚性,它呈现围绕小于零均值的偏态分布。单尾检验•如果t临界值,则拒绝零假设H0:=0,认为时间序列不存在单位根,是平稳的。单尾检验样本容量显著性水平2550100500∝t分布临界值(n=∝)0.01-3.75-3.58-3.51-3.44-3.43-2.330.05-3.00-2.93-2.89-2.87-2.86-1.650.10-2.63-2.60-2.58-2.57-2.57-1.28迪基-富勒使用蒙特卡罗仿真实验计算了统计量极限分布的临界值2、ADF检验(AugmentDickey-Fullertest)•为什么将DF检验扩展为ADF检验?•DF检验假定时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成,或者随机误差项并非是白噪声,用OLS法进行估计均会表现出随机误差项出现自相关,导致DF检验无效。•如果时间序列含有明显的随时间变化的某种趋势(如上升或下降),也容易导致DF检验中的自相关随机误差项问题。•ADF检验模型tmiitittXXX11tmiitittXXX11tmiitittXXtX11零假设H0:=0(Xt为随机游走序列)备择假设H1:0(Xt为平稳序列)模型1模型2模型3•检验过程–实际检验时从模型3开始,然后模型2、模型1。–何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时停止检验。–否则,就要继续检验,直到检验完模型1为止。•检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相应的临界值表。•检验模型滞后项阶数的确定:以随机项不存在序列相关为准则。模型统计量样本容量0.010.0250.050.1025-2.66-2.26-1.95-1.6050-2.62-2.25-1.95-1.61100-2.60-2.24-1.95-1.61250-2.58-2.23-1.95-1.61500-2.58-2.23-1.95-1.611500-2.58-2.23-1.95-1.6125-3.75-3.33-3.00-2.6250-3.58-3.22-2.93-2.60100-3.51-3.17-2.89-2.58250-3.46-3.14-2.88-2.57500-3.44-3.13-2.87-2.57500-3.43-3.12-2.86-2.57253.412.972.612.20503.282.892.562.181003.222.862.542.172503.192.842.532.165003.182.832.522.1625003.182.832.522.16tmiitittXXX11tmiitittXXX11模型统计量样本容量0.010.0250.050.1025-4.38-3.95-3.60-3.2450-4.15-3.80-3.50-3.18100-4.04-3.73-3.45-3.15250-3.99-3.69-3.43-3.13500-3.98-3.68-3.42-3.13500-3.96-3.66-3.41-3.12254.053.593.202.77503.873.473.142.751003.783.423.112.732503.743.393.092.735003.723.383.082.725003.713.383.082.72253.743.252.852.39503.603.182.812.381003.533.142.792.382503.493.122.792.385003.483.112.782.3835003.463.112.782.38tmiitittXXtX11•一个简单的检验过程:–同时估计出上述三个模型的适当形式,然后通过ADF临界值表检验零假设H0:=0。–只要其中有一个模型的检验结果拒绝了零假设,就可以认为时间序列是平稳的;–当三个模型的检验结果都不能拒绝零假设时,则认为时间序列是非平稳的。3、例:检验1978-2000年间中国支出法GDP时间序列的平稳性•例2.2.2检验1978~2006年间中国实际支出法国内生产总值GDPC时间序列的平稳性。•下面演示的是检验1978~2000年间中国支出法国内生产总值GDPC时间序列的平稳性。•方法原理和过程是一样的,例2.2.2可以作为同学的练习。21101.150.10093.027.22933.1011ttttGDPGDPGDPTGDP(-1.26)(1.91)(0.31)(8.94)(-4.95)•首先检验模型3,经过偿试,模型3取2阶滞后:需进一步检验模型2。LM(1)=0.92,LM(2)=4.16系数的t临界值,不能拒绝存在单位根的零假设。小于5%显著性水平下自由度分别为1与2的2分布的临界值,可见不存在自相关性,因此该模型的设定是正确的。•检验模型2,经试验,模型2中滞后项取2阶:21115.165.1057.045.357ttttGDPGDPGDPGDP(-0.90)(3.38)(10.40)(-5.63)LM(1)=0.57LM(2)=2.
本文标题:平稳性和单位根检验
链接地址:https://www.777doc.com/doc-4399941 .html