您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 广告经营 > 中考旋转的几种类型02
中考旋转的几种类型(一)正三角形类型•在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。例1.如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型•在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。例2.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。(三)等腰直角三角形类型•在等腰直角三角形ΔABC中,∠C=900,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。例3.如图,在ΔABC中,∠ACB=900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。例1.如图,将ΔABC绕顶点A顺时针旋转60º后得到ΔAB´C´,且C´为BC的中点,则C´D:DB´=()A.1:2B.1:C.1:D.1:3分析:由于ΔAB´C´是ΔABC绕顶点A顺时针旋转60º后得到的,所以,旋转角∠CAC′=60º,ΔAB´C´≌ΔABC,∴AC´=AC,∠CAC′=60º,∴ΔAC´C是等边三角形,∴AC´=AC´.又C´为BC的中点,∴BC´=CC´,易得ΔAB´C、ΔABC是含30º角的直角三角形,从而ΔAC´D也是含30º角的直角三角形点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30º角的直角三角形的性质的能力,解题的关键是发现ΔAC´C是等边三角形.D•例2.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()A.30°B.45°C.60°D.75°分析:由已知条件∠BAD′=30°,易得∠DAD′=60º,又∵D、D′关于AE对称,∴∠EAD=∠EAD′=30º,∴∠AED=∠AED′=60º.故选C点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′C点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的知识就能较快得到计算结果。由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。题型多以填空题、计算题呈现。在解答此类问题时,我们通常将其转换成全等求解。根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,则△ADE的面积是()A、1B、2C、3D、不能确定分析:解题的关键是求△ADE的边AD上的高。可先求作直角梯形的高DF,想到将△CDF绕D逆时针旋转90°至△EDG,由EG=GF,只要CF的长,就可以求出△ADE的面积。解:过D做DF⊥BC于F,过E做EG⊥,交AD的延长线于G∵∠B=90°,AD∥BC∴四边形ABFD为矩形∴FC=BC-AD=3-2=1,∠EDC=∠FDC=90°∴∠FDC=∠EDG,又∵∠DFC=∠G=90°,ED=CD∴△EDG≌△CDF,∴EG=CF=1因此,选择A点评:明确△ADE的边AD上的高的概念不要误写成DE,作梯形高是常见的解题方法之一。A变式题1:如图,已知△ABC中AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB、AC于点E、F,给出以下五个结论:(1)AE=CF(2)∠APE=∠CPF(3)△EPF是等腰直角三角形(4)EF=AP(5)S四边形AEPF=S△ABC÷2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)上述结论中始终正确的序号有___例2、D、E为AB的中点,将△ABC沿线段DE折叠,使点A落在点F处。若∠B=50°,则∠BDF=___分析:通过折纸实验,多次尝试,得出结论。解:∵D、E为AB的中点,∴DE∥BC,∠ADE=∠B=50°由折纸实验得:∠ADE=∠FDE∴∠BDF=180°-∠ADE-∠FDE=180°-2×50°=80°点评:几何变换没有可套用的模式,关键是同学们要善于多角度、多层次、多侧面地思考问题,观察问题、分析问题。变式题2:如图,矩形纸片ABCD,AB=2,∠ADB=30°,将它沿对角线BD折叠(使△ABD和△EBD落在同一平面内)则A、E两点间的距离为___旋转具有以下特征:(1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等;(3)对应角、对应线段相等;(4)图形的形状和大小都不变。利用旋转的特征,可巧妙解决很多数学问题,如一.求线段长.例:如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,且AE⊥EF,AE=EF,求CF的长。【解析】:将△ABE以点E为旋转中心,顺时针旋转90°,此时点B旋转到点B'处,AE与EF重合,由旋转特征知:B'E⊥BC,四边形B'ECF为长方形,∴CE=BF'=AB∵CF+CE=B'E+CE=BE+EC=BC=6∴CF=BC-CE=6-4=2二.求角的大小例:如图,在等边△ABC中,点E、D分别为AB、BC上的两点,且BE=CD,AD与CE交于点M,求∠AME的大小。【解析】:因为BC=AC,∠ABC=∠ACD=60°,BE=CD,所以以△ABC的中心(等边三角形三条中线的交点)O为旋转中心,将△ADC顺时针旋转120°就得到了△CEB,∴∠AME=180°-∠AMC=180°-120°=60°三.进行几何推理例:如图,点F在正方形ABCD的边BC上,AE平分∠DAF,请说明DE=AF-BF成立的理由。2、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。例:如图,正方形ABCD内一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?分析:本题关键是说明∠PCD=∠PBA=30°,利用条件可以设想将ΔAPD绕点D逆时针方向旋转90°,而使A与C重合,此时问题得到解决.解:将ΔAPD绕点D逆时针旋转90°,得ΔDP’C,再作ΔDP’C关于DC的轴对称图形ΔDQC,得ΔCDQ与ΔADP经过对折后能够重合。∵PD=QD∴∠PDQ=90°-15°-15°=60°,∴△PDQ为等边三角形,∴∠PQD=60°.∵∠DQC=∠APD=180°-15°-15°=150°,∴∠PQC=360°-60°-150°=150°=∠DQC,,∵PQ=QD=CQ,∴∠PCQ=∠DCQ=15°∴∠PCD=30°∴∠PCB=60°∵PC=BC=CD∴ΔPBC为等边三角形观察思考:旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。
本文标题:中考旋转的几种类型02
链接地址:https://www.777doc.com/doc-4403574 .html