您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 《圆的极坐标方程》课件1
1.3简单曲线的极坐标方程曲线的极坐标方程一、定义:如果曲线C上的点与方程f(,)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(,)=0;(2)方程f(,)=0的所有解为坐标的点都在曲线C上。则曲线C的方程是f(,)=0。探究:如图,半径为a的圆的圆心坐标为(a,0)(a0),你能用一个等式表示圆上任意一点的极坐标(,)满足的条件?xC(a,0)O)1()0,2(),2,0()1.(..........cos2cos),(,2的坐标满足等式可以验证,点=即中。在以外的任意一点,那么,为圆上除点设=,那么是交点。设圆与极轴的另一个解:圆经过极点aAOaMOAOAOMAMORtAMOMAOMaOAAO的点都在这个圆上。等式,可以验证,坐标适合满足的条件,另一方面坐标就是圆上任意一点的极所以,等式)1(),()1(的极坐标方程。叫做曲线那么方程上,的点都在曲线并且坐标适合方程一个满足方程一点的极坐标中至少有上任意,如果平面曲线一般地,在极坐标系中CfCffC0),(0),(0),(的圆的极坐标方程。为半径就是圆心在所以,aaaCa),0)(0,(cos2极坐标方程:例1、已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程简单?xOrM简单。上比式合时的极坐标方程在形显然,使极点与圆心重=即为圆上任意一点,则设都等于半径何特征就是它们的极径几图),那么圆上各点的为极轴建立坐标系(如出发的一条射线为极点,从解:如果以圆心)1(,),(.rrOMMrOO53cos5sin已知一个圆的方程是=求圆心坐思考:标和半径。2222253cos5sin53cos5sin535535()()2522535(,),522xyxyxy解:=两边同乘以得=-即化为直角坐标为 即所以圆心为半径是你可以用极坐标方程直接来求吗?3110(cossin)10cos()226(5,),56解:原式可化为=所以圆心为半径为Oaaaa此圆过极点=圆的极坐标方程为半径为圆心为)cos(2)0)(,(练习以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是.2cos.2sin44.2cos1.2sin1ABCDC3110(cossin)10cos()226(5,),56解:原式可化为=所以圆心为半径为Oaaaa此圆过极点=圆的极坐标方程为半径为圆心为)cos(2)0)(,(练习以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是.2cos.2sin44.2cos1.2sin1ABCDC题组练习1求下列圆的极坐标方程(1)中心在极点,半径为2;(2)中心在C(a,0),半径为a;(3)中心在(a,/2),半径为a;(4)中心在C(0,0),半径为r。=2=2acos=2asin2+02-20cos(-0)=r2方程是什么?化为直角坐标=、曲线的极坐标方程sin414)2(22yx圆的圆心距是多少?的两个=和=、极坐标方程分别是sincos21cos(,0)2sincos()cos()2212sin(,),222解:圆=圆心的坐标是圆圆=的圆心坐标是所以圆心距是题组练习23cos()4、极坐标方程所表示的曲线是()A、双曲线B、椭圆C、抛物线D、圆D为半径的圆。为圆心,以=解:该方程可以化为21)4,21()4cos(41)42()42(02222sin22cos224sinsin4coscos22222yxyxyx即=解:410cos()3、圆=的圆心坐标是)0,5(、A)3,5(、B)3,5(、C)32,5(、D()C5(2,)2A、写出圆心在点处且过极点的圆的极坐标方程,并把它化成直角坐标方程。222224cos()4sin24sin4(2)4xyyxy解:=化为直角坐标系为=即 2126:2cos,:23sin20,CC、已知圆圆试判断两圆的位置关系。所以两圆相外切。半径为,圆心半径为圆心坐标方程为解:将两圆都化为直角21)3,0(1)3(:1)0,1(,1)1(:2122221221OOOyxCOyxC78cosOCONON、从极点作圆:=的弦,求的中点的轨迹方程。ONMC(4,0)(4,0),4,,4cosCrOCCMMONCMONM解:如图,圆的圆心半径连结,是弦的中点所以,动点的轨迹方程是=化为直角坐标方程。-=把极坐标方程练习cos241648316844)4(4424cos22222222yxxxxyxxx=两边平方得:+=即-解:方程可化为直线的极坐标方程答:与直角坐标系里的情况一样,求曲线的极坐标方程就是找出曲线上动点P的坐标与之间的关系,然后列出方程(,)=0,再化简并讨论。怎样求曲线的极坐标方程?例题1:求过极点,倾角为的射线的极坐标方程。4oMx﹚4分析:如图,所求的射线上任一点的极角都是,其/4极径可以取任意的非负数。故所求直线的极坐标方程为(0)4新课讲授1、求过极点,倾角为的射线的极坐标方程。54易得5(0)4思考:2、求过极点,倾角为的直线的极坐标方程。4544或和前面的直角坐标系里直线方程的表示形式比较起来,极坐标系里的直线表示起来很不方便,要用两条射线组合而成。原因在哪?0为了弥补这个不足,可以考虑允许极径可以取全体实数。则上面的直线的极坐标方程可以表示为()4R或5()4R例题2、求过点A(a,0)(a0),且垂直于极轴的直线L的极坐标方程。解:如图,设点(,)M为直线L上除点A外的任意一点,连接OMox﹚AM在中有RtMOAcosOMMOAOA即cosa可以验证,点A的坐标也满足上式。求直线的极坐标方程步骤1、根据题意画出草图;2、设点是直线上任意一点;(,)M3、连接MO;4、根据几何条件建立关于的方程,并化简;,5、检验并确认所得的方程即为所求。练习:设点P的极坐标为A,直线过点P且与极轴所成的角为,求直线的极坐标方程。(,0)all解:如图,设点(,)M为直线上异于的点l连接OM,﹚oMxp在中有MOAsin()sin()a即sin()sina显然A点也满足上方程。例题3设点P的极坐标为,直线过点P且与极轴所成的角为,求直线的极坐标方程。11(,)lloxMP﹚﹚11解:如图,设点(,)M点P外的任意一点,连接OM为直线上除则由点P的极坐标知,OMxOM1OP1xOP设直线L与极轴交于点A。则在MOP1,()OMPOPM由正弦定理得11sin[()]sin()11sin()sin()显然点P的坐标也是它的解。平行于极轴的直线。、求过点练习)4,2(1AOHMA)4,2((,)(2,)42sin24sin,sin2(2,)4sin2lMAMHRtOMHMHOMA解:在直线上任意取点在中,=即所以,过点平行于极轴的直线方程为的直线的极坐标方程。且斜率为、求过2)3,2(2A程这就是所求的极坐标方得代入直线方程将为直线上的任意一点,设角坐标系内直线方程为解:由题意可知,在直07sincos2072sin,cos),(072yxyxMyx表示的曲线是、极坐标方程)(31sin3RA、两条相交的直线B、两条射线C、一条直线D、一条射线所以是两条相交直线两条直线即所以得可得解:由已知042:,042:4242tan322cos31sin21yxlyxlxy4cos24cos2,sin2sin2,2sinABCD、直线关于直线=对称的直线方程为、、、、=()B2sin22化为极坐标方程为即的对称直线的问题关于线解:此题可以变成求直yxyx3cos3cos33sin33sin)6sin(125、、、、直线的极坐标方程是的,则过圆心与极轴垂直=一个圆的方程为、在极坐标系中,已知DCBA()C4cos,4cos2cos,2sinsin46、、、、直线的方程是相切的一条=、在极坐标系中,与圆DCBA()B2cos24)2(04sin42222化为极坐标方程为圆的方程为那么一条与此圆相切的即的化为直角坐标方程是=解:圆xyxyyx._________4)0(307面积所围成的=和=,=、曲线OXAB384612SAOB即的面积积就是扇形解:由图可知围成的面1.小结:(1)曲线的极坐标方程概念(2)怎样求曲线的极坐标方程(3)圆的极坐标方程2.直线的几种极坐标方程1)过极点2)过某个定点,且垂直于极轴3)过某个定点,且与极轴成一定的角度
本文标题:《圆的极坐标方程》课件1
链接地址:https://www.777doc.com/doc-4480928 .html