您好,欢迎访问三七文档
浙江大学材料系3玻璃体1、说明熔体中聚合物形成过程?答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。可分为三个阶段初期:石英的分化;中期:缩聚并伴随变形;后期:在一定时间和一定温度下,聚合和解聚达到平衡。2、简述影响熔体粘度的因素?答:影响熔体粘度的主要因素:温度和熔体的组成。碱性氧化物含量增加,剧烈降低粘度。随温度降低,熔体粘度按指数关系递增。3、SiO2熔体中随着Na2O加入量的不同,粘度如何变化,为什么?SiO2熔体中加入Na2O,粘度随着Na2O增多,使O/Si值上升,m下降,[SiO4]从网络变成孤岛状,粘度迅速下降。4、名词解释(并比较其异同)⑴晶子学说和无规则网络学说⑵单键强⑶分化和缩聚⑷网络形成剂和网络变性剂答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶格变形的有序区域。它们分散在无定形介中质,晶子向无定形部分过渡是逐渐完成时,二者没有明显界限。无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子多面体(三角体或四面体)构筑起来的。晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。⑶分化过程:架状[SiO4]断裂称为熔融石英的分化过程。缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻璃。即凡氧化物的单键能/熔点﹥0.74kJ/mol.k者称为网络形成剂。网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变,即单键强/熔点﹤0.125kJ/mol.k者称为网络变形剂。5、试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。它们的结构有什么不同?答:利用X—射线检测。晶体SiO2—质点在三维空间做有规律的排列,各向异性。SiO2熔体—内部结构为架状,近程有序,远程无序。SiO2玻璃—各向同性。硅胶—疏松多孔。6、玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数?解:Na2OCaOSiO2wt%131374mol0.210.231.23mol%12.613.873.6R=(12.6+13.8+73.6×2)/73.6=2.39∵Z=4∴X=2R﹣Z=2.39×2﹣4=0.72Y=Z﹣X=4﹣0.72=3.28氧桥%=3.28/(3.28×0.5+0.72)=69.5%7、有两种不同配比的玻璃,其组成如下:试用玻璃结构参数说明两种玻璃高温下粘度的大小?解:对于1:Z=4R1=O/Si=2.55∴X1=2R1﹣4=1.1Y1=Z﹣X1=4﹣1.1=2.9对于2:R2=O/Si=2.45∴X2=2R2﹣4=0.9Y2=4﹣X2=4﹣0.9=3.1∵Y1﹤Y2∴序号1的玻璃组成的粘度比序号2的玻璃小。8、试述石英晶体、石英熔体、Na2O•2SiO2熔体结构和性质上的区别。解:石英晶体石英熔体Na2O•2SiO2结构[SiO4]按共顶方式对称有规律有序排列,远程有序基本结构单元[SiO4]呈架状结构,远程无序基本结构单元[Si6O18]12-呈六节环或八节环,远程无序性质固体无流动性,熔点高,硬度大,导电性差,结构稳定,化学稳定性好有流动性,η大,电导率大,表面张力大有流动性,η较石英熔体小,电导率大,表面张力大9、某熔体粘度在727℃时是108泊,1156℃时是104泊,要获得粘度为107泊的熔体,要加热到什么温度?解:根据lnη=A+B/T,727℃时,η=108P0,1156℃时,η=104P0,∴A=-5.32,B=13324,当η=107P0时,则t=80℃。10、在Na2O—SiO2系统及RO—SiO2系统中随着SiO2含量的增加,熔体的粘度将升高而表面张力则降低,说明原因。序号Na2O(wt%)Al2O3(wt%)SiO2(wt%)181280212880解:Na2O-SiO2系统中,SiO2含量增加,η增大,σ减小;因为SiO2含量增加,聚合离子团尺寸增大,迁移阻力增大,η增大,e/r减小,相互作用力减小,σ减小;RO-SiO2系统中,SiO2含量增加,η增大,σ减小;因为无SiO2时RO-O2系统η很低,表面张力大;加入SiO2,系统中出现聚合离子团,SiO2增加,聚合离子团尺寸增大,数目增大,η增大,σ减小。11、简述硅酸盐晶体结构分类的原则,及其各类硅酸盐晶体结构的特点。答:硅酸盐晶体结构分类是按[SiO4]四面体的连接方式进行分类,分为岛状、组群状、链状、层状和架状。各类硅酸盐晶体结构特点参见表3-1。12、试从结构上比较硅酸盐晶体和硅酸盐玻璃的区别。3、硅酸盐玻璃在结构上与相应的硅酸盐晶体有显著的区别:(1)在晶体中,[SiO4]按一定的对称规律排列;在玻璃中则是无序的。(2)在晶体中,骨架外的M+或M2+金属阳离子占据了点阵的固定位置;在玻璃中则是统计均匀地分布在骨架的空腔内,并起着平衡非桥氧负电荷的作用。(3)在晶体中,只有当骨架外的阳离子半径相近时,才能发生同晶置换;在玻璃中则不论半径如何,只要遵守静电价规则,骨架外阳离子均能发生相互置换。(4)在晶体中(除固溶体外),氧化物之间有固定的化学计量;在玻璃中氧化物可以非化学计量的任意比例混合。13、在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5,此时析晶能力是增强还是削弱?解:设加入xmol的Na2O,而SiO2的量为ymol。则O/Si=(x+2y)/y=2.5∴x=y/2即二者的物质量比为1:2时,O/Si=2.5。因为O/Si增加了,粘度下降,析晶能力增强了。14、有一种平板玻璃组成为14Na2O—13CaO—73SiO2(wt%重量百分比),其密度为2.5g/cm3,计算玻璃的原子堆积系数(AFP)为多少?计算该玻璃的结构参数值?解:该玻璃的平均分子量GM=0.14×62+0.13×56+0.73×60.02=59.77在1Å3中原子数为n=ρNo/GM=2.5×10-24×6.02×1023/59.77=0.252个/Å3在1Å3原子所占体积V=0.0252×4/3π[0.14×2×0.983+0.13×1.063+0.73×0.393+(0.14+0.13+0.73×2)×1.323]=0.4685∴AFP=0.46结构参数:Na2OCaOSiO2wt%141373mol0.230.231.22mol%13.713.772.6R=(13.7+13.7+72.6×2)/72.6=2.38∵Z=4∴X=2R﹣Z=2.38×2﹣4=0.76Y=Z﹣X=4﹣0.76=3.2415、说明在一定温度下同组成的玻璃比晶体具有较高的内能及晶体具有一定的熔点而玻璃体没有固定熔点的原因。解:玻璃的介稳性:熔体转变为玻璃过程中,是快速冷却,使玻璃在低温下保留了高温时的结构状态,玻璃态是能量的介稳态,有自发放热而转变为晶体的趋势;玻璃无固定熔点:熔体结晶过程中,系统必有多个相出现,有固定熔点;熔体向玻璃体转变时,其过程是渐变的,无多个相出现,无固定的熔点,只有一个转化温度范围。16、某窗玻璃含14Na2O-14CaO-72SiO2(重量百分数),求非桥氧百分数。17、网络外体(如Na2O)加到SiO2熔体中,使氧硅比增加,当O/Si≈2.5~3时,即达到形成玻璃的极限,O/Si3时,则不能形成玻璃,为什么?解:在熔体结构中,不O/Si比值对应着一定的聚集负离子团结构,如当O/Si比值为2时,熔体中含有大小不等的歪扭的[SiO2]n聚集团(即石英玻璃熔体);随着O/Si比值的增加,硅氧负离子集团不断变小,当O/Si比值增至4时,硅-氧负离子集团全部拆散成为分立状的[SiO4]4-,这就很难形成玻璃。18、按照在形成氧化物玻璃中的作用,把下列氧化物分为网络变体,中间体和网络形成体:SiO2,Na2O,B2O3,CaO,Al2O3,P2O5,K2O,BaO。解:网络变体Na2OCaOK2OBaO中间体Al2O3网络形成体SiO2B2O3P2O519、试述微晶学说与无规则网络学说的主要观点,并比较两种学说在解释玻璃结构上的共同点和分歧。解:微晶学说:玻璃结构是一种不连续的原子集合体,即无数“晶子”分散在无定形介质中;“晶子”的化学性质和数量取决于玻璃的化学组成,可以是独立原子团或一定组成的化合物和固溶体等微晶多相体,与该玻璃物系的相平衡有关;“晶子”不同于一般微晶,而是带有晶格极度变形的微小有序区域,在“晶子”中心质点排列较有规律,愈远离中心则变形程度愈大;从“晶子”部分到无定形部分的过渡是逐步完成的,两者之间无明显界限。无规则网络学说:玻璃的结构与相应的晶体结构相似,同样形成连续的三维空间网络结构。但玻璃的网络与晶体的网络不同,玻璃的网络是不规则的、非周期性的,因此玻璃的内能比晶体的内能要大。由于玻璃的强度与晶体的强度属于同一个数量级,玻璃的内能与相应晶体的内能相差并不多,因此它们的结构单元(四面体或三角体)应是相同的,不同之处在与排列的周期性。微晶学说强调了玻璃结构的不均匀性、不连续性及有序性等方面特征,成功地解释了玻璃折射率在加热过程中的突变现象。网络学说强调了玻璃中离子与多面体相互间排列的均匀性、连续性及无序性等方面结构特征。20、试比较硅酸盐玻璃与硼酸盐玻璃在结构与性能上的差异。答:结构差异:硅酸盐玻璃:石英玻璃是硅酸盐玻璃的基础。石英玻璃是硅氧四面体[SiO4]以顶角相连而组成的三维架状结构。由于Si—O—Si键角变动范围大,使石英玻璃中[SiO4]四面体排列成无规则网络结构。SiO2是硅酸盐玻璃中的主要氧化物。硼酸盐玻璃:B和O交替排列的平面六角环的B—O集团是硼酸盐玻璃的重要基元,这些环通过B—O—B链连成三维网络。B2O3是网络形成剂。这种连环结构与石英玻璃硅氧四面体的不规则网络不同,任何O—B三角体的周围空间并不完全被临接的三角体所填充,两个原子接近的可能性较小。性能差异:硅酸盐玻璃:试剂和气体介质化学稳定性好、硬度高、生产方法简单等优点。硼酸盐玻璃:硼酸盐玻璃有某些优异的特性。例如:硼酐是唯一能用以制造有吸收慢中子的氧化物玻璃;氧化硼玻璃的转化温度比硅酸盐玻璃低得多;硼对中子射线的灵敏度高,硼酸盐玻璃作为原子反应堆的窗口对材料起屏蔽中子射线的作用。21、解释硼酸盐玻璃的硼反常现象?答:硼反常现象:随着Na2O(R2O)含量的增加,桥氧数增大,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始减少,热膨胀系数重新上升,这种反常现象就是硼反常现象。硼反常现象原因:当数量不多的碱金属氧化物同B2O3一起熔融时,碱金属所提供的氧不像熔融SiO2玻璃中作为非桥氧出现在结构中,而是使硼转变为由桥氧组成的硼氧四面体。致使B2O3玻璃从原来二度空间层状结构部分转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。这与相同条件下的硅酸盐玻璃性能随碱金属或碱土金属加入量的变化规律相反。22、试述熔体粘度对玻璃形成的影响?在硅酸盐熔体中,分析加入—价碱金属氧化物、二价金属氧化物或B2O3后熔体粘度的变化?为什么?答:熔体粘度对玻璃形成具有决定性作用。熔体在熔点时具有很大粘度,并且粘度随温度降低而剧烈地升高时,容易形成玻璃。在硅酸盐熔体中,加入R2O,随着O/Si比增加,提供游离氧,桥氧数减小,硅氧网络断裂,使熔体粘度显著减小。加入RO,提供游离氧,使硅氧网络断裂,熔体粘度降低,但是由于R2+的场强较大,有一定的集聚作用,降低的幅度较小。加入B2O3,加入量少时,B2O3处于三度空间连接的[BO4]四面体中,使结构网络聚集紧密,粘度上升。随着B2O3含量增加,B3+开始处于[BO3]三角形中使结构网络疏松,粘度下降。23、试述X射线粉末衍射分析法中如何确定晶体物相。答:在X射线衍射仪中,入射的X射线通过晶体粉末样品时发生衍射后,出射的X射线被计数器所接收,经过计算机处理后绘制成
本文标题:玻璃
链接地址:https://www.777doc.com/doc-4527251 .html