您好,欢迎访问三七文档
启东学海教育初二数学下复习讲义chl相似三角形【知识梳理】1.比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,abcdabcdadbcac()b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。2.比例性质:①基本性质:abcdadbc②合比性质:±±abcdabbcdd③等比性质:……≠……abcdmnbdnacmbdnab()03.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。则,,,…ABBCDEEFABACDEDFBCACEFDF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。1.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.注意:①相似比是有顺序的,比如△ABC∽△A1B1C1,相似比为k,若△A1B1C1∽△ABC,则相似比为1k。②若两个三角形的相似比为1,则这两个三角形全等,全等三角形是相似三角形的特殊情况。若两个三角形全等,则这两个三角形相似;若两个三角形相似,则这两个三角形不一定全等.AABCBCDEDE11ABCDABCEEDA211BCACBEDDBCADEABCD2.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.经过归纳和总结,相似三角形有以下几种基本类型:①平行线型常见的有如下两种,DE∥BC,则△ADE∽△ABC②相交线型常见的有如下四种情形,如图,已知∠1=∠B,则由公共角∠A得,△ADE∽△ABC如下左图,已知∠1=∠B,则由公共角∠A得,△ADC∽△ACB如下右图,已知∠B=∠D,则由对顶角∠1=∠2得,△ADE∽△ABC③旋转型已知∠BAD=∠CAE,∠B=∠D,则△ADE∽△ABC,右图为常见的基本图形.④母子型已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD.3.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.4.图形位似两个多边形不仅相似,而且,对应边互相平行。像这样的两个图形叫做位似形,这个点叫做位似中心。第15题图PRFEABCD【典型例题】1.已知x∶4=y∶5=z∶6,则①x∶y∶z=,②)(yx∶____)(zy;2.若322yyx,则_____yx;3.如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=21DC.若AB=10,BC=12,则图中阴影部分面积为.4.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA、PR的中点.如果DR=3,AD=4,则EF的长为.5、如图,点1234AAAA,,,在射线OA上,点123BBB,,在射线OB上,且112233ABABAB∥∥,213243ABABAB∥∥.若212ABB△,323ABB△的面积分别为1,4,则图中三个阴影三角形面积之和为.6、如图,DEF△是由ABC△经过位似变换得到的,点O是位似中心,DEF,,分别是OAOBOC,,的中点,则DEF△与ABC△的面积比是()A.1:6B.1:5C.1:4D.1:27、如图,Rt△ABAC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A.35xB.45xC.72D.21212525xx8、如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)CGAE;(2).MNCNDNAN(第17题)HGFEDCBAABCDEP(第5题图)OA1A2A3A4ABB1B2B314ABCKHGFDE【学生练习】一、选择题1.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米2.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对3.如图ΔABC中,DE∥BC,且AD∶DB=2∶1,那么DE∶BC等于()A.2∶1B.1∶2C.3∶2D.2∶34.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A.ΔADE∽ΔECFB.ΔECF∽ΔAEFC.ΔADE∽ΔAEFD.ΔAEF∽ΔABF第5题5.如图,点ABCDEFGHK,,,,,,,,都是78方格纸中的格点,为使DEMABC△∽△,则点M应是FGHK,,,四点中的____(填哪个点)6.平面直角坐标系中,有一条“鱼”,它有六个顶点,则()A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似二、填空题7.已知2yx,则yyx;xyx.8.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为.第6题第2题第3题第4题9.下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是(把你认为正确的说法的序号都填上).10.一个四边形的边长分别是3,4,5,6,与它相似的四边形最小边长为6,则这个四边形的周长是.11.如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.2m,梯上点D距墙0.9m,BD长0.6m,则梯子的长为.12.如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为.三、观察与比较13.如图,在梯形ABCD中,AB∥BC,∠BAD=90°,对角线BD⊥DC.(1)ΔABD与ΔDCB相似吗?请说明理由.(2)如果AD=4,BC=9,求BD的长.14.如图,矩形ABCD的花坛宽AB=20米,长AD=30米。现计划在该花坛四周修筑小路,使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似,并且相对两条小路的宽相等,试问小路的宽x与y的比值是多少,说出你的理由.四、操作与解释15.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形,并说明理由.(要求:所画三角形为钝角三角形,标明字母)(第11题图)(第13题图)(第15题图)(第14题图)(第12题图)16.如图,A(4,0)、B(0,2)是直角坐标系中的两点,点C在x轴上(C与A不重合),若由点B、O、C组成的三角形与ΔAOB相似(不含全等).(1)求出C点的坐标:(2)画出ΔCOB.17.已知CD为一幢3米高的温室外墙,其南面窗户的底框G距地面1米,且CD在地面上留下的影子CF长为2米,现在距C点7米的正南方A点处建一幢12米高的楼房AB(设A、C、F在同一条水平线上)(1)按比例较精确地画出高楼AB及它的影子AE;(2)楼房AB建成后是否影响温室CD的采光?试说明理由。18.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,以Q、A、P为顶点的三角形与△ABC相似?(第18题图)(第16题图)中考链接1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个2、(2013泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.3、(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
本文标题:初二数学相似
链接地址:https://www.777doc.com/doc-4611252 .html