您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年广东省中考数学模试卷3
12019年广东省中考数学模试卷3一.选择题(共10小题,满分30分,每小题3分)1.如图,点A所表示的数的绝对值是()A.3B.﹣3C.D.2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.3.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10104.如果关于x的一元二次方程(m﹣3)x2+3x+m2﹣9=0有一个解是0,那么m的值是()A.3B.﹣3C.±3D.0或﹣35.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.6.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°7.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5B.24.5,24C.24,24D.23.5,248.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()2A.B.C.D.10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折叠后得到的图形是轴对称图形;④折叠后∠ABE和∠CBD一定相等;其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:2m2﹣2=.12.把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.13.若m﹣=2,则m2+=.14.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=15.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为.16.如图,点D,C的坐标分别为(﹣1,﹣4)和(﹣5,﹣4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于A,B两点(A在B的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为.三.解答题(共3小题,满分18分,每小题6分)17.计算:|﹣|+(﹣1)0+2sin45°﹣2cos30°+()﹣1.18.先化简,再求值(1﹣)÷,其中x=4.319.尺规作图:已知:∠AOB.求作:射线OC,使它平分∠AOB.作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D、E为圆心,大于DE的同样长为半径作弧,两弧相交于点C;(3)作射线OC.所以射线OC就是所求作的射线.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连结CE,CD.∵OE=OD,=,OC=OC,∴△OEC≌△ODC(依据:),∴∠EOC=∠DOC,即OC平分∠AOB.四.解答题(共3小题,满分21分,每小题7分)20.小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)21.为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:4分数/分80859095人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是分,众数是分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.22.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5五.解答题(共3小题,满分27分,每小题9分)23.如图,在平面直角坐标系中,O为坐标原点,直角三角形OBD的直角顶点D在x轴正半轴上,B在第一象限,OB=,tan∠BOD=2.(1)求图象经过点B的反比例函数的解析式.(2)点E是(1)中反比例函数图象上一点,连接BE、DE,若BE=DE,求四边形OBED的面积.24.问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)625.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.72019年广东省中考数学模试卷3一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:|﹣3|=3,故选:A.2【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.【解答】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.4.【解答】解:把x=0代入方程(m﹣3)x2+3x+m2﹣9=0中,得m2﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B.5..故选:C.6.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.7.【解答】解:这组数据中,众数为24.5,中位数为24.5.故选:A.8【解答】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(﹣2,﹣4)故选:A.9.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.10.【解答】解:①∵四边形ABCD为矩形,∴∠A=∠C,AB=CD,∵∠AEB=∠CED,∴△AEB≌△CED,∴△EBA和△EDC一定是全等三角形,正确;②∵△AEB≌△CED,∴BE=DE,∴∠ABE=∠CDE,∴△EBD是等腰三角形,EB=ED,正确;③折叠后得到的图形是轴对称图形,正确;④折叠后∠ABE+2∠CBD=90°,∠ABE和∠CBD不一定相等(除非都是30°),故此说法错误.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:2m2﹣2,=2(m2﹣1),=2(m+1)(m﹣1).故答案为:2(m+1)(m﹣1).12.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.13【解答】解:∵m﹣=2,∴m2+﹣2=4,则m2+=6,故答案为:6.814.【解答】解:如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2﹣πOC2=(m2﹣n2)π,OB2﹣OC2=m2﹣n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=AB=,CD=AC﹣AD=m﹣=,由勾股定理得:OB2﹣OC2=(BD2+OD2)﹣(CD2+OD2)=BD2﹣CD2=(BD+CD)(BD﹣CD)=mn,∴m2﹣n2=mn,m2﹣mn﹣n2=0,m=,∵m>0,n>0,∴m=,∴=,故答案为:.15.】解:∵四边形OABC为矩形,点A的坐标为(0,4),点D的坐标为(m,1),∴BD=3,∵将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,∴AB=AE,BD=DE,∠ABD=∠AED=90°,∵当△ADE是等腰直角三角形时,AE=ED,∴AB=BD,∠BAD=45°,∴∠DAE=∠BAD=45°,∴E在y轴上,AB=BD=AE=DE=3,∴四边形ABDE是正方形,OE=1,∴点E的坐标为(0,1);故答案为:(0,1).16.【解答】解:当顶点在D点时,B的横坐标最大,此时,DB两点的水平距离为4,∴AB=8,当顶点在C点时,A点的横坐标最小,∴A的横坐标最小值为﹣5﹣•AB═﹣9,故答案为﹣9.三.解答题(共3小题,满分18分,每小题6分)17.【解答】解:原式=﹣+1+2×﹣2×+2018=2019.18.【解答】解:原式=(﹣)÷=•=,当x=4时,原式==.19.【解答】解:(1)射线OC如图所示;(2)连结CE,CD.∵OE=OD,EC=CD,OC=OC,∴△OEC≌△ODC(依据:SSS),∴∠EOC=∠DOC,即OC平分∠AOB.故答案为:CE,CD,SSS.四.解答题(共3小题,满分21分,每小题7分)20.【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),21.【解答】解:(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%
本文标题:2019年广东省中考数学模试卷3
链接地址:https://www.777doc.com/doc-4623684 .html