您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版九年级数学下册全册教案
1.第二十六章二次函数[本章知识重点]1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1二次函数[本课知识重点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[MM及创新思维](1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.[实践与探索]例1.m取哪些值时,函数)1()(22mmxxmmy是以x为自变量的二次函数?分析若函数)1()(22mmxxmmy是二次函数,须满足的条件是:02mm.解若函数)1()(22mmxxmmy是二次函数,则02mm.解得0m,且1m.因此,当0m,且1m时,函数)1()(22mmxxmmy是二次函数.回顾与反思形如cbxaxy2的函数只有在0a的条件下才是二次函数.探索若函数)1()(22mmxxmmy是以x为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.2(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得)0(62aaS,其中S是a的二次函数;(2)由题意,得)0(42xxy,其中y是x的二次函数;(3)由题意,得10000%98.110000xy(x≥0且是正整数),其中y是x的一次函数;(4)由题意,得)260(1321)26(212xxxxxS,其中S是x的二次函数.例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.解(1))2150(4225415222xxxS;(2)当x=3cm时,189342252S(cm2).[当堂课内练习]1.下列函数中,哪些是二次函数?(1)02xy(2)2)1()2)(2(xxxy(3)xxy12(4)322xxy2.当k为何值时,函数1)1(2kkxky为二次函数?3.已知正方形的面积为)(2cmy,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组31.已知函数72)3(mxmy是二次函数,求m的值.2.已知二次函数2axy,当x=3时,y=-5,当x=-5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.4.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.22)1(xmyB.22)1(xmyC.22)1(xmyD.22)1(xmy6.下列函数关系中,可以看作二次函数cbxaxy2(0a)模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系[本课学习体会]§26.2用函数观点看一元二次方程(第一课时)教学目标(一)知识与技能1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)过程与方法1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论.培养大家的合作交流意识.(三)情感态度与价值观1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造.感受数学的严谨性以及数学结论的确定性,2.具有初步的创新精神和实践能力.4教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程Ⅰ.创设问题情境,引入新课1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数)y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?2.选教材提出的问题,直接引入新课Ⅱ.合作交流解读探究1.二次函数与一元二次方程之间的关系探究:教材问题师生同步完成.观察:教材22页,学生小组交流.归纳:先由学生完成,然后师生评价,最后教师归纳.Ⅲ.应用迁移巩固提高1.根据二次函数图像看一元二次方程的根同期声2.抛物线与x轴的交点情况求待定系数的范围.3.根据一元二次方程根的情况来判断抛物线与x轴的交点情况Ⅳ.总结反思拓展升华本节课学了如下内容:1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.3.数学方法:分类讨论和数形结合.反思:在判断抛物线与x轴的交点情况时,和抛物线中的二次项系数的正负有无关系?拓展:教案Ⅴ.课后作业P231.3.5526.2二次函数的图象与性质(1)[本课知识重点]会用描点法画出二次函数2axy的图象,概括出图象的特点及函数的性质.[MM及创新思维]我们已经知道,一次函数12xy,反比例函数xy3的图象分别是、,那么二次函数2xy的图象是什么呢?(1)描点法画函数2xy的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数2xy的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22xy(2)22xy解列表x…-3-2-10123…22xy…188202818…22xy…-18-8-20-2-8-18…分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:22xy的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22xy的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.6例2.已知42)2(kkxky是二次函数,且当0x时,y随x的增大而增大.(1)求k的值;(2)求顶点坐标和对称轴.解(1)由题意,得02242kkk,解得k=2.(2)二次函数为24xy,则顶点坐标为(0,0),对称轴为y轴.例3.已知正方形周长为Ccm,面积为Scm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得)0(1612CCS.列表:C2468…2161CS411494…描点、连线,图象如图26.2.2.(2)根据图象得S=1cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4cm2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.[当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23xy(2)23xy(3)231xy2.(1)函数232xy的开口,对称轴是,顶点坐标是;(2)函数241xy的开口,对称轴是,顶点坐标是.3.已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图.7[本课课外作业]A组1.在同一直角坐标系中,画出下列函数的图象.(1)24xy(2)241xy2.填空:(1)抛物线25xy,当x=时,y有最值,是.(2)当m=时,抛物线mmxmy2)1(开口向下.(3)已知函数1222)(kkxkky是二次函数,它的图象开口,当x时,y随x的增大而增大.3.已知抛物线102kkkxy中,当0x时,y随x的增大而增大.(1)求k的值;(2)作出函数的图象(草图).4.已知抛物线2axy经过点(1,3),求当y=9时,x的值.B组5.底面是边长为x的正方形,高为0.5cm的长方体的体积为ycm3.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8cm3时底面边长x的值;(4)根据图象,求出x取何值时,y≥4.5cm3.6.二次函数2axy与直线32xy交于点P(1,b).(1)求a、b的值;(2)写出二次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小.7.一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且过M(-2,2).(1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M关于y轴对称的点N的坐标,并求出⊿MON的面积.[本课学习体会]26.2二次函数的图象与性质(2)[本课知识重点]会画出kaxy2这类函数的图象,通过比较,了解这类函数的性质.[MM及创新思维]同学们还记得一次函数xy2与12xy的图象的关系吗?8,你能由此推测二次函数2xy与12xy的图象之间的关系吗?,那么2xy与22xy的图象之间又有何关系?.[实践与探索]例1.在同一直角坐标系中,画出函数22xy与222xy的图象.解列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系
本文标题:人教版九年级数学下册全册教案
链接地址:https://www.777doc.com/doc-4830095 .html