您好,欢迎访问三七文档
PPT(1)大家上午好!今天我汇报的主题是:基于改进型LBP算法的运动目标检测系统。运动目标检测技术能降低视频监控的人力成本,提高监控效率,同时也是运动目标提取、跟踪及识别算法的基础。图像信号具有数据量大,实时性要求高等特征。随着算法的复杂度和图像清晰度的提高,需要的处理速度也越来越高。幸运的是,图像处理的固有特性是并行的,尤其是低层和中间层算法。这一特性使这些算法,比较容易在FPGA等并行运算器件上实现,今天汇报的主题就是关于改进型LBP算法在硬件上的实现。goodmorningeveryone.MyreportisaboutaMotionDetectionSystemBasedonImprovedLBPOperator.Automaticmotiondetectioncanreducethehumancostofvideosurveillanceandimproveefficiency[ɪ'fɪʃ(ə)nsɪ],itisalsothefundamentofobjectextraction,trackingandrecognition[rekəg'nɪʃ(ə)n].Inthiswork,efforts['efəts]weremadetoestablishthebackgroundmodelwhichisresistancetothevariationofillumination.AndourvideosurveillancesystemwasrealizedonaFPGAbasedplatform.PPT(2)目前,常用的运动目标检测算法有背景差分法、帧间差分法等。帧间差分法的基本原理是将相邻两帧图像的对应像素点的灰度值进行减法运算,若得到的差值的绝对值大于阈值,则将该点判定为运动点。但是帧间差分检测的结果往往是运动物体的轮廓,无法获得目标的完整形态。Currently,OpticFlow,BackgroundSubtractionandInter-framedifferenceareregardasthethreemainstreamalgorithmstodetectmovingobject.Inter-framedifferencebasedmethodneednotmodel['mɒdl]thebackground.Itdetectsmovingobjectsbasedontheframedifferencebetweentwocontinuousframes.Themethodiseasytobeimplementedandcanrealizereal-timedetection,butitcannotextractthefullshapeofthemovingobjects[6].PPT(3)在摄像头固定的情况下,背景差分法较为简单,且易于实现。若背景已知,并能提供完整的特征数据,该方法能较准确地检测出运动目标。但在实际的应用中,准确的背景模型很难建立。如果背景模型如果没有很好地适应场景的变化,将大大影响目标检测结果的准确性。像这副图中,背景模型没有及时更新,导致了检测的错误。Thebasicprincipleofbackgroundremovalmethodisbuildingabackgroundmodelandprovidingaclassificationofthepixelsintoeitherforegroundorbackground[3-5].Inacomplexanddynamicenvironment,itisdifficulttobuildarobust[rə(ʊ)'bʌst]backgroundmodel.PPT(4)上述的帧间差分法和背景差分法都是基于灰度的。基于灰度的算法在光照条件改变的情况下,性能会大大地降低,甚至失去作用。Thealgorithmswehavediscussedaboveareallbasedongrayscale.Inpracticalapplicationsespeciallyoutdoorenvironment,thegrayscalesofeachpixelareunpredictablyshiftybecauseofthevariationsintheintensityandangleofillumination.PPT(5)为了解决光照改变带来的基于灰度的算法失效的问题,我们考虑用纹理特征来检测运动目标。而LBP算法是目前最常用的表征纹理特征的算法之一。首先在图像中提取相邻9个像素点的灰度值。然后对9个像素中除中心像素以外的其他8个像素做二值化处理。大于等于中心点像素的,标记为1,小于的则标记为0。最后将中心像素点周围的标记值按统一的顺序排列,得到LBP值,图中计算出的LBP值为10001111。当某区域内所有像素的灰度都同时增大或减小一定的数值时,该区域内的LBP值是不会改变的,这就是LBP对灰度的平移不变特性。它能够很好地解决灰度受光照影响的问题。Inordertosolvetheaboveproblems,weproposedanimprovedLBPalgorithmwhichisresistancetothevariationsofillumination.Localbinarypattern(LBP)iswidelyusedinmachinevisionapplicationssuchasfacedetection,facerecognitionandmovingobjectdetection[9-11].LBPrepresentsarelativelysimpleyetpowerfultexturedescriptorwhichcandescribetherelationshipofapixelwithitsimmediateneighborhood.ThefundamentalofLBPoperatorisshowedinFig1.ThebasicversionofLBPproduces256texturepatternsbasedona9pixelsneighborhood.Theneighboringpixelissetto1or0accordingtothegrayscalevalueofthepixelislargerthanthevalueofcentricpixelornot.Forexample,inFig17islargerthan6,sothepixelinfirstrowfirstcolumnissetto1.Arrangingthe8binarynumbersincertainorder,wegetan8bitsbinarynumber,whichistheLBPpatternweneed.ForexampleinFig.1,theLBPis10001111.LBPistolerant['tɒl(ə)r(ə)nt]againstilluminationchanging.Whenthegrayscalesofpixelsina9pixelswindowareshiftedduetoilluminationchanging,theLBPvaluewillkeepunchanged.PPT(6)图中的一些常见的纹理,都能用一些简单的LBP向量表示,对于每个像素快,只需要用一个8比特的LBP值来表示。Therearesometextures,andtheycanberepresentbysomesimple8bitLBPpatterns.PPT(7)从这幅图也可以看出,虽然灰度发生了很大的变化,但是纹理特征并没有改变,LBP值也没有变化。Youcansee,inthesepicture,althoughthegrayscalechangealot,buttheLBPpatternskeepitvalue.PPT(8)上述的算法是LBP算法的基本形式,但是这种基本算法不适合直接应用在视频监控系统中。主要有两个原因:第一,在常用的视频监控系统中,特别是在高清视频监控系统中,9个像素点覆盖的区域很小,在如此小的区域内,各个像素点的灰度值十分接近,甚至是相同的,纹理特征不明显,无法在LBP值上体现。第二,由于以像素为单位计算LBP值,像素噪声会造成LBP值的噪声。这两个原因导致计算出的LBP值存在较大的随机性,甚至在静止的图像中,相邻两帧对应位置的LBP值也可能存在差异,从而引起的误检测。为了得到更好的检测性能,我们采用基于块均值的LBP算法。这种方法的基本原理是先计算出3×3个像素组成的的像素块的灰度均值,以灰度均值作为该像素块的灰度值。然后以3×3个像素块(即9×9个像素)为单位,计算LBP值。ThetypicalLBPcannotmeettheneedofpracticalapplicationofvideosurveillancefortworeasons:Firstly,a“window”whichonlycontains9pixelsisasmallareainwhichthegrayscalesofpixelsaresimilarorsametoeachother,andthetexturefeatureinsuchasmallareaistooweaktobereflectedbyaLBP.Secondly,pixelnoisewillimmediatelycausethenoiseofLBP,whichmayleadtoalargenumberofwrongdetection.Inordertoobtainabetterperformance,weproposedanimprovedLBPbasedonthemeanvalueof“block”.Inouralgorithm,oneblockcontains9pixels.ComparedwithoriginalLBPpatterncalculatedinalocal9neighborhoodbetweenpixels,theimprovedLBPoperatorisdefinedbycomparingthemeangrayscalevalueofcentralblockwiththoseofitsneighborhoodblocks(seeFig.2).Byreplacingthegrayscalesofpixelswiththemeanvalueofblocks,theeffectofthepixelnoiseisreduced.ThetexturefeatureinsuchabiggerareaismoresignificanttobedescribedbyLBPpattern.PPT(9)运用LBP描述背景,其本质上也是背景差分法的一种。背景差分法应用在复杂的视频监控场景中时,要解决建立健壮的背景模型的问题。驶入并停泊在监控画面中的汽车,被搬移出监控画面的箱子等,都会造成背景的改变。而正确的背景模型是正确检测出运动目标并提取完整目标轮廓的基础。如果系统能定时更新背景模型,将已经移动出监控画面的物体“剔除”出背景模型,将进入监控画面并且稳定停留在画面中的物体“添加”入背景模型,会减少很多由于背景改变而造成的误检测。根据前一节的介绍,帧间差分法虽然无法提取完整的运动目标,但是它是一种不依赖背景模型就能进行运动目标检测的算法。因此,可以利用帧间差分法作为当前监控画面中是否有运动目标的依据。如果画面中没有运动目标,就定期对背景模型进行更新。如果画面中有运动目标,就推迟更新背景模型。这样就能避免把运动目标错误地“添加”到背景模型中。Inpracticalapplication,thebackgroundischangingrandomly.Fortraditionalbackgroundsubtractionalgorithmtheincapabil
本文标题:英文国际会议讲稿
链接地址:https://www.777doc.com/doc-4873573 .html