您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 1.2.1几个常见函数的导数
1.2.1几个常用函数的导数一、复习1.解析几何中,过曲线某点的切线的斜率的精确描述与求值;物理学中,物体运动过程中,在某时刻的瞬时速度的精确描述与求值等,都是极限思想得到本质相同的数学表达式,将它们抽象归纳为一个统一的概念和公式——导数,导数源于实践,又服务于实践.2.求函数的导数的方法是:(1)()();yfxxfx求函数的增量(2):()();yfxxfxxx求函数的增量与自变量的增量的比值0(3)()lim.xyyfxx求极限,得导函数说明:上面的方法中把x换成x0即为求函数在点x0处的导数.说明:上面的方法中把x换成x0即为求函数在点x0处的导数.3.函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即.这也是求函数在点x0处的导数的方法之一。)(0xf)(xf0|)()(0xxxfxf4.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.5.求切线方程的步骤:(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。0()fx(2)根据直线方程的点斜式写出切线方程,即000()()().yfxfxxx二、几种常见函数的导数根据导数的定义可以得出一些常见函数的导数公式.0()CC公式一:为常数:(),yfxC解1)函数y=f(x)=c的导数.()()0,yfxxfxCC0,yx0()lim0.xyfxCx二、几种常见函数的导数'1x公式二::(),yfxx解2)函数y=f(x)=x的导数.()()(),yfxxfxxxxx1,yx0()'lim1.xyfxxx二、几种常见函数的导数2'2xx公式三:()2:(),yfxx解3)函数y=f(x)=x2的导数.222()()()2,yfxxfxxxxxxx222,yxxxxxxx220002()()'limlimlim(2)2.xxxyxxxfxxxxxxx二、几种常见函数的导数211'xx公式四:()1:(),yfxx解4)函数y=f(x)=1/x的导数.11()()()xyfxxfxxxxxxx1,()yxxxx200111()()'limlim.()xxyfxxxxxxx二、几种常见函数的导数1'2xx公式五:():(),yfxx解()()yfxxfxxxx0011()()'limlim.2xxyfxxxxxxx()yfxx5、函数的导数()()()1yxxxxxxxxxxxxxxxxxx即今后我们可以直接使用的基本初等函数的导数公式表11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'();17.()log,'()(0,1);ln8.nnxxxxafxcfxfxxfxnxfxxfxxfxxfxxfxafxaaafxefxefxxfxaaxa公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln,'();fxxfxx则注意:关于是两个不同的函数,例如:axxa和)3)(1(x))(2(3xaxln323x例1:求下列函数的导数5(1)(2)yxyxxx3(3)4(4)logxyyx三.典例分析).2(,)1(3fxy求已知213333)(xxxy解:12)2(3)2(2f312222)(xxxy解:2722712)3(2)3(3f).3(,1)2(2fxy求已知例2:例3.求下列函数的导数)2cos()3(3sin)2()2sin()1(xyyxy例4.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。题型:求曲线的切线方程'2yx解(1),(2):2(1,1),(2,4)PQyx都是曲线上的点。11'|2,xPy过点的切线的斜率k22'|4,xy过Q点的切线的斜率k12(1),210Pyxxy过点的切线方程:即:。44(2),440yxxy过Q点的切线方程:即:。例4.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。题型:求曲线的切线方程'2yx解(3):411,21PQ直线的斜率k11,440214yxxy与PQ平行的切线方程:即:。00'|21,xxyx切线的斜率k01,2x11(,)24M切点四、小结2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.1.会求常用函数的导数.21,,,,ycyxyxyyxx3、我们今后可以直接使用的基本初等函数的导数公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'();17.()log,'()(0,1);ln8.nnxxxxafxcfxfxxfxnxfxxfxxfxxfxxfxafxaaafxefxefxxfxaaxa公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln,'();fxxfxx则
本文标题:1.2.1几个常见函数的导数
链接地址:https://www.777doc.com/doc-4911542 .html