您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 高考函数复习(学生版)
。-可编辑修改-专题二函数考点一、函数三要素函数的解析式常用求法有:待定系数法、换元法(或凑配法)、解方程组法.使用换元法时,要注意研究定义域的变化.在简单实际问题中建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.求函数的定义域一般有三类问题:一是给出解释式(如例1),应抓住使整个解式有意义的自变量的集合;二是未给出解析式(如例2),就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.1给出下列两个条件:(1)f(x+1)=x+2x;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.2等腰梯形ABCD的两底分别为AD=2a,BC=a,∠BAD=45°,作直线MN⊥AD交AD于M,交折线ABCD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.3求下列函数的定义域:(1)y=xxx||)1(0;(2)y=232531xx;(3)y=1·1xx4求下列函数的值域:(1)y=;122xxxx(2)y=x-x21;(3)y=1e1exx.二、函数的性质函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇。-可编辑修改-偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.1设集合A={x|x-1或x1},B={x|log2x0},则A∩B=()A.{x|x1}B.{x|x0}C.{x|x-1}D.{x|x-1或x1}2设11xfxx,又记11,,1,2,,kkfxfxfxffxk则)(2010xf()A.11xx;B.11xx;C.x;D.1x;3函数3()sin1()fxxxxR,若()2fa,则()fa的值为()A.3B.0C.-1D.-24设kR,函数111()11xxfxxx,,≥,()()Fxfxkx,xR,试讨论函数()Fx的单调性.5已知函数f(x)的定义域为R,且满足f(x+2)=-f(x)(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=21x,求使f(x)=-21在[0,2010]上的所有x的个数.三、函数的图象图象变换:①y=f(x))(轴对称xfyy②y=f(x))(轴对称xfyx③y=f(x))(原点对称xfy④y=f(x)→y=f(|x|),把x轴上方的图象保留,x轴下方的图象关于x轴对称⑤y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)⑥伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。注:一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。。-可编辑修改-因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.1、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()2.作出下列函数的图象.(1)y=21(lgx+|lgx|);(2)y=112xx;(3)y=)21(|x|.四、二次函数二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延.作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系.这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题.同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础.因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征.从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.ABCD。-可编辑修改-1、设二次函数fxaxbxca20,方程fxx0的两个根xx12,满足0112xxa.当xx01,时,证明xfxx1.1)(xxf2、设二次函数2()fxxaxa,方程()0fxx的两根1x和2x满足1201xx.(I)求实数a的取值范围;(II)试比较(0)(1)(0)fff与116的大小.并说明理由.四、指数函数与对数函数指数函数,对数函数是两类重要的基本初等函数,高考中既考查双基,又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用.因此应做到能熟练掌握它们的图象与性质并能进行一定的综合运用.1、已知函数()log(21)(01)xafxbaa,的图象如图所示,则ab,满足的关系是()A.101abB.101baC.101baD.1101ab2、设1a,函数()logafxx在区间2aa,上的最大值与最小值之差为12,则a()A.2B.2C.22D.43、若13(1)ln2lnlnxeaxbxcx,,,,,则()A.abcB.cabC.bacD.bca4、设a>0,f(x)=xxaaee是R上的偶函数.(1)求a的值;(2)求证:f(x)在(0,+∞)上是增函数.5、已知函数f(x)=log2(x2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a的取值范围.五、反函数反函数在高考试卷中一般为选择题或填空题,难度不大。通常是求反函数或考察互为反函数的两个函数的性质应用和图象关系。主要利用方法为:1Oyx。-可编辑修改-1.反函数的概念及求解步骤:①由方程y=(x)中解出x=(y);即用y的代数式表示x.。②改写字母x和y,得出y=-1(x);③求出或写出反函数的定义域,(亦即y=(x)的值域)。即反解互换求定义域2.互为反函数的两个函数的图象之间的关系,3.互为反函数的两个函数性质之间的关系:注意:在定义域内严格单调的函数必有反函数,但存在反函数的函数在定义域内不一定严格单调,如y=1x。1、函数()3(02)xfxx≤的反函数的定义域为()A.(0),B.(19],C.(01),D.[9),2、设函数()yfx存在反函数1()yfx,且函数()yxfx的图象过点(1,2),则函数1()yfxx的图象一定过点.五、抽象函数抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难.但由于此类试题即能考查函数的概念和性质,又能考查学生的思维能力,所以备受命题者的青睐,那么,怎样求解抽象函数问题呢,我们可以利用特殊模型法,函数性质法,特殊化方法,联想类比转化法,等多种方法从多角度,多层面去分析研究抽象函数问题.(一)函数性质法函数的特征是通过其性质(如奇偶性,单调性周期性,特殊点等)反应出来的,抽象函数也是如此,只有充分挖掘和利用题设条件和隐含的性质,灵活进行等价转化,抽象函数问题才能转化,化难为易,常用的解题方法有:1,利用奇偶性整体思考;2,利用单调性等价转化;3,利用周期性回归已知4;利用对称性数形结合;5,借助特殊点,布列方程等.(二)特殊化方法。-可编辑修改-1、在求解函数解析式或研究函数性质时,一般用代换的方法,将x换成-x等2、在求函数值时,可用特殊值代入3、研究抽象函数的具体模型,用具体模型解选择题,填空题,或由具体模型函数对综合题,的解答提供思路和方法.总之,抽象函数问题求解,用常规方法一般很难凑效,但我们如果能通过对题目的信息分析与研究,采用特殊的方法和手段求解,往往会收到事半功倍之功效,真有些山穷水复疑无路,柳暗花明又一村的快感.1、定义在R上的函数()fx满足()()()2fxyfxfyxy(xyR,),(1)2f,则(2)f等于()A.2B.3C.6D.92、.232|)x(f:|,x)x1(f2)x(f),)x(f,x()x(fy求证且为实数即是实数函数设3、已知函数f(x)对任何正数x,y都有f(xy)=f(x)f(y),且f(x)≠0,当x1时,f(x)1.试判断f(x)在(0,+∞)上的单调性,并说明理由.4、设定义在R上的函数f(x),满足当x0时,f(x)1,且对任意x,y∈R,有f(x+y)=f(x)f(y),f(1)=2六、函数的综合应用函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.七、函数的零点。-可编辑修改-函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点连续函数在某个区间上存在零点的判别方法:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.1、函数xxxf1lg)(的零点所在的区间是A.1,0B.(1,10)C.100,10D.),100(2、已知a是实数,函数2()223fxaxxa,如果函数()yfx在区间[-1,1]上有零点,求实数a的取值范围。、选择题1.(2009年广东卷文)若函数()yfx是函数1xyaaa(0,且)的反函数,且(2)1f
本文标题:高考函数复习(学生版)
链接地址:https://www.777doc.com/doc-4928659 .html