您好,欢迎访问三七文档
Itellin@163.comAMOS的使用•第一部分:介绍o关于文挡o访问AMOSo文挡o获得AMOS帮助•第二部分:SEM基础oSEM概述oSEM术语o为什么使用SEM?•第三部分:SEM假设o合理的样本量o连续和正态内生变量o模型识别(识别方程)o完整数据或缺失数据的适当处理o模型规范和因果关系的理论基础•第四部分:使用AG建立和检验模型o结构方程——多重回归关系的说明o使用AG绘制模型o将数据读入到AMOS中o选择AMOS分析选项和运行模型•第五部分:AMOS输出解释o评估整体模型拟合o绝对拟合检验o相对拟合检验o修改模型获得较好的拟合优度o浏览路径图o独立参数的显著性检验•第六部分:摘要:结论的实质性解释1Itellin@163.com第一部分:介绍关于文档本课程使用AMOS(距结构分析)软件对结构方程进行简单的介绍和概述。结构方程模型(SEM)包括多种统计技术,如路径分析,验证性因子分析,带潜变量的因果关系模型,甚至方差分析和多重线性回归。课程介绍SEM的逻辑,SEM的假设和输入需求,怎样使用AMOS执行SEM分析。到课程结束,能够使用AMOS拟合SEM。也能给出SEM适合研究问题的评价和SEM方法基本假设的概述。应该已经知道使用SAS,SPSS或类似统计软件怎样产生多重线性回归分析。也应该理解怎样解释多重线性回归分析的输出。昀后,应该理解基本微软视窗导航操作:打开文件和文件夹,保存文件,重新调用先前保存过的文件,等等。访问AMOS可以用下列三种方法访问AMOS:1.个人计算机用户须从SPSS公司(SPSS许可版本)或者Smallwaters公司(独立版本)获得许可密码2.德克萨斯大学的教师,学生和职员经由STATS视窗终端服务器访问AMOS。要使用终端服务器,必须获得ITS计算机账号(或分类账号),然后在NT服务器上验证账号。接下来下载和配置客户端软件使个人计算机,Macintosh,或UNIX工作站能连接终端服务器。昀后连接服务器,通过双击位于STATS终端服务组中AMOS程序肖像登陆AMOS。如何获得ITS计算机账号的细节,账号使用的变更,下载客户端软件和配置指导可以在GeneralFAQ#30:ConnectingtopublishedstatisticalapplicationsontheITSWindowsTerminalServer.中找到。3.从AMOSdevelopmentwebsite网站下载免费AMOS学生版到个人计算机上。如果模型比较小,免费演示版能充分满足需求。对大型模型,需要购买AMOS软件或通过校园网络访问ITS共享的软件副本。特别是如果决定利用服务器访问其它程序软件(例如,SAS,SPSS,HLM,Mplus等等),后一项选择昀有效。文档2Itellin@163.comAMOS手册是由JamesArbuckle和WernerWothke撰写的AMOS4.0User'sGuide。包含20多个例子,有许多调查得到的典型模型。这些样本数据的例子在学生版和商业版的AMOS中都有,所以能容易地在AMOS中拟合,修改描述模型。AMOS4.0User'sGuide手册在UTAustin的职员,学生,教师经检验合格后在PCL获得。也可以直接从SmallwatersCorporationWebsite网站定购。BarbaraByrne也写了一本使用AMOS的书。书名是《AMOS的SEM:基本概念,应用和编程》。这本书由LawrenceErlbaumAssociates,Inc出版。LawrenceErlbaumAssociates有限公司也出版SEM杂志(季刊)。杂志包含软件回顾,经验文章,理论文章以及教师部分和书评。有许多SEM的教科书,范围从KenBollen的百科参考书到RickHoyle的更多实用编辑手册。几个常用的书名显示如下。Bollen,K.A.(1989).潜变量的结构方程NewYork:JohnWileyandSons.Loehlin,J.C.(1997).潜变量模型Mahwah,NJ:LawrenceErlbaumAssociates.Hoyle,R.(1995).SEM:概念,问题和应用。ThousandOaks,CA:SagePublications.Hatcher,L.(1996).循序渐进把SAS系统用于因子分析和结构方程模型。Cary,NC:SASInstitute,Inc.获得AMOS帮助如果在STATS视窗终端服务器上访问AMOS有困难,请打ITS的客服电话512-475-9400或发送e-mail到help@its.utexas.edu。如果能登陆视窗NT终端服务器运行AMOS,但有怎样使用AMOS或解释输出的问题,请预约统计和数学服务部,打ITS客服电话512-475-9400或发送e-mail到stats@its.utexas.edu。重要提示:两个服务部只是在德克萨斯大学的教师,学生和职员使用。有关指导服务的更多信息及常见问题和回答EFA,CFA/SEM,AMOS,其它题目见我们的网站。非大学用户和大学AMOS用户可以访问EdRigdon'sSEMFAQWebsite网站获得有用的资源;怎样登陆论坛,发表问题和学习更多SEM的信息,见SEMNET上的在线讨论组第二部分:SEM基础SEM概述3Itellin@163.comSEM是一般线性模型的扩展。它能使研究者同时检验一组回归方程。SEM软件不但能检验传统模型,而且也执行更复杂关系和模型的检验,例如,验证性因子分析和时间序列分析。进行SEM分析的基本途径显示如下:理论解释模型构建模型识别数据收集模型检验结果研究者首先基于理论定义模型,然后确定怎样测量建构,收集数据,然后输入数据到SEM软件中。软件拟合指定模型的数据并产生包括整体模型拟合统计量和参数估计的结果。分析的输入通常是测量变量的协方差阵,例如调查项目得分,虽然有时使用相关阵或协方差和均值阵。实际上,数据分析经常用原始数据提供给SEM,程序转换这些数据为它自身使用的协方差和均值。模型由测量变量间的关系组成。然后,这些关系表示所有可能关系的限制。样本协方差矩阵模型模型协方差矩阵结果有模型拟合的全部指数以及参数估计,标准误,模型中自由参数的检验统计量。SEM术语4Itellin@163.comSEM有其自身的语言。一般来讲统计方法有这种特性,但SEM用户和创建者似乎为这种方法发明了一个特殊的语言。自变量,假设没有测量误差的,称为外生变量;因变量或中间变量被称作为内生变量。观测变量直接由研究者测量,而潜在或不可观测变量不能直接测量但可由分析中测量变量的相关性或关联推断。统计估计可由多种方式实现,探索性因子分析从观测变量的共享方差中推断潜在因子的存在。SEM用户使用路径图表示观测和非观测变量间的关系。椭圆或圆形表示潜在变量,而长方形或方形表示测量变量。残差总是非观测的,所以它们用椭圆或圆形表示。下图所示,相关系数和协方差由双向箭头表示,表示没有明确定义因果方向的关系。例如F1和F2是有关的或相关的,但没有声称F1导致F2,反之亦然。5Itellin@163.com6Itellin@163.com相反,我们声称F1引起测量变量I1和I2上的观测得分。因果效应在路径图中由单箭头表示。F1和F2被两个指示因子共享的方差概念化(例如,两个指示因子共有什么。)至今为止正如所猜测的那样,F1和F2是潜因子;I1到I4是观测变量。也许它们是调查项。E1到E4是I1到I4中引起响应方差的残差或误差方差。路径图告诉我们1到4的得分或调查响应项是由两个相关因子及每项的唯一方差引起的。部分唯一方差或许是由于测量误差。路径图中一部分路径被标上数字“1”。意思是这些路径系数设为固定值为1。必须要包括这些固定值:它们设置潜在因子和残差的测量尺度。另一种选择是,把因子方差设置为1以获得固有的标准解。注释:当执行多组分析时不应该使用后一种方法。为什么使用SEM?如后面所见,研究者为什么想使用SEM和必需用它自己的语言处理一些相当严格的统计假设?SEM有许多吸引人的优点:•假设潜在的统计分析是明确的和可检验的,调查者能全部控制和进一步地分析理解。•绘图接口软件创造性地推进和使快速调式模型变得容易(这个特性取决于所选的SEM软件)。•SEM程序同时提供总体模型检验和独立参数估计检验。•回归系数,均值和方差同时被比较,即使多个组间交叉。•测量和验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染。•拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。•SEM的昀后特征是它昀具吸引人的性质。SEM提供统一的架构,多个线性模型能使用灵活,功能强大的软件拟合。第三部分:SEM的假设合理的样本量SEM是一般线性模型灵活有力的扩展。像其它统计方法一样,需要一系列假设。这些假设应该满足或至少近似地保证有可信赖的结果。按照JamesStevens的社会科学的应用多变量统计的说法,一个好的经验法则是在标准普通昀小二乘多重回归分析中每个因子有15个个案。因为SEM在某些方面与多重回归紧密相关,SEM中每个测量变量15个个案是合理的。Bentler和Chou(1987)注意到只要7Itellin@163.com数据表现良好(例如,正态分布,无缺失数据或例外值等等),在SEM分析中研究者对每个参数估计,只需要5个个案。注意Bentler和Chou提及每个参数估计要有5个个案而不是每个测量变量。测量变量在分析中至少有一个典型地路径系数与其它变量相关联,加上残差项或方差估计,所以认可Bentler和Chou和Stevens推荐的每个测量变量昀小要15个个案相吻合是重要的。更一般的,Loehlin(1992)使用验证性因子分析模型报告蒙特卡洛仿真的研究结果,参考一些文献后,得出对两到四因子模型,调查者应该收集至少100个个案,200更好(如果可能)。使用小样本的结果包括迭代失败(软件不能达到满意的解),不合理的解(包括测量变量的方差估计为负值)和降低参数估计的准确性,尤其是,标准误–SEM的标准误是在大样本假设下进行计算的。当数据是非正态分布或在某些方面是有缺陷的情况下(几乎总是对个案),需要较大的样本。当数据有偏斜,有高低峰,不完整或不尽合理时,对所需要的样本量做出绝对的推荐是困难的。一般的推荐是尽可能获得较多的数据。内生变量的连续和正态分布SEM程序假设因变量和中间变量(所谓的内生变量是SEM的叫法)是连续分布,有正态分布的残差。事实上,SEM分析的残差不仅仅要求服从单变量正态分布,它们的联合分布也要服从联合多变量正态分布。然而,这个假设在实际中从未满足。SEM专家已经开发多种方法处理非正态分布变量。这些方法是为假设有潜在连续分布的变量而设计。例如,也许你管理一个研究参与者自信心项目的李克特量表。量表按照自信的连续程度由低到高计分,即使项目数据不是连续分布,潜在自信分布也是连续的。相反,其它结果变量不是连续分布。例如,医学研究中病人处理后是生还是死?大部分SEM程序目前不能处理这些名义水平因变量的类型。模型识别(识别方程)如不久所见,为了产生有判断力的一组结果,SEM程序需要已知足够数量的相关阵或协方差阵作为输入。另一个要求是方程完全可识别。在SEM中,识别涉及参数估计至少有一个唯一解的概念。参数估计只有一个可能解的模型称为恰好识别。有无限可能参数估计值的模型叫做欠识别。昀后,参数估计多于一个可能解(除了一个昀佳或昀优解外)的模型叫做过度识别。下列方程,来自Rigdon(1997),或许可以帮助更清晰的理解这些概念:x+2y=7在上面方程中,x和y有无穷多个解(例如,x=5和y=1,x=3和y=2)。因为“已知”比“未知”少,所以这些值是欠识别的。恰好识别模型是方程个数与变量个数相同8Itellin@163.com的方程。x+2y=73x-y
本文标题:AMOS中文教程
链接地址:https://www.777doc.com/doc-4935681 .html