您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 中南大学复变函数考试试卷(A)及答案
中南大学考试试卷(A)2008--2009学年第二学期时间110分钟复变函数与积分变换课程40学时2.5学分考试形式:闭卷专业年级:教改信息班总分100分,占总评成绩70%注:此页不作答题纸,请将答案写在答题纸上一、单项选择题(15分,每小题3分)1.下列方程中,表示直线的是()。254(54)54(54)112Re1AizizzzBizizCziziDzzz2.函数222()()(2)fzxyxixyy在()处可导。22ABxCyD全平面处处不可导3.下列命题中,不正确的是()。0Res,0Im1.zzAfzfzBfzDzfzDCeiDzei如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数,则在内解析.幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆4.下列级数绝对收敛的是()。221111112nnnnnnniiiABCiDnnn5.设fz在01z内解析且0lim1zzfz,那么Res,0fz()。2211AiBiCD二、填空题(15分,每空3分)1.Ln1i的主值为。2.函数ReImfzzzz()=+仅在点z=处可导。3.1sinzzzezdz。4.函数ln1z在0z处的泰勒展开式。5.幂级数11nnzn的收敛半径为。三.(10分)求解析函数fzuiv()=+,已知22,()1uxyxyfii。四.(20分)求下列积分的值1.2241zzedzzz2.20sin0xxdxaxa五.(15分)若函数z在点解析,试分析在下列情形:1.为函数fz的m阶零点;2.为函数fz的m阶极点;求0Res,fzzzfz。六.(15分)试求211fzz以zi为中心的洛朗级数。七.(10分)已知单位阶跃函数0010tutt,试证明其傅氏变换为1j。中南大学考试试卷(A)答案2008--2009学年第二学期时间110分钟复变函数与积分变换课程40学时2.5学分考试形式:闭卷专业年级:教改信息班总分100分,占总评成绩70%注:此页不作答题纸,请将答案写在答题纸上三、单项选择题(15分,每小题3分)6.A7.B8.A9.C10.C四、填空题(15分,每空3分)1.ln24i。2.。3.233z。4.半平面1Re2wR。5.0。三.(10分)解:容易验证u是全平面的调和函数。利用C-R条件,先求出v的两个偏导数。,0,000222,2(,)22211222xyxyvuvuyxxyxyyxvxyyxdxxydyCxdxxydyCxxyyC则四.(20分)求下列积分的值1.23ei2.这里m=2,n=1,m-n=1,R(z)在实轴上无孤立奇点,因而所求的积分是存在的22ed2πRes[()e,]ixizxxiRzaixae2lim2ππ2izaaziazeiiiezia22220sin11dIm().22ixaxxxxedxexaxa因此五.(15分)00000000000010010!(1)0,!,Res,nnmnnzzzzzzzzzzznzfzmzfzzzzzzzzfzmzzzzfzzzzmzmzzmzzzzznzfzzfz解:函数在点解析等价于在的一个邻域内为的阶零点等价于在的一个邻域内其中在点解析,于是在的去心领域由此可知00002Res,zmzfzzzmzfz与上面类似六.(15分)22242242,cos2,.221112!!111cos12!4!2!zznnnezRzezzzznzzzzzn函数距原点最近的奇点其距离就是函数在幂级数展开式的收敛半径,即=收敛范围为由222201221132422022420242cos2cos,01112!!11112!4!2!3291,,,2243291cos224zznnnnzecczczzzezzcczzzccznzzzncccezzz及幂级数的除法,可设注意到与均为偶函数,其展开式中不含项可知于是比较同次系数得故42z七.(10分)[1]2F21[()]()tutiF3[3]iteF[sin2]22tiF从而321[]2()22ifteiF
本文标题:中南大学复变函数考试试卷(A)及答案
链接地址:https://www.777doc.com/doc-4979064 .html