您好,欢迎访问三七文档
层级一︱的基础送分题练中自检,无须挖潜——为攻克后面的难点、盲点留足复习时间集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁UA)=∅,A∪(∁UA)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题型专题(一)集合与常用逻辑用语集合的关系及运算练熟常见题型——速度快人一部[题组练透]1.(2016·全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)0,x∈Z}={x|-1x2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2016·河南六市联考)已知集合A={x|x2-3x0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3)B.(0,1)∪(1,3)C.(0,1)D.(-∞,1)∪(3,+∞)解析:选B∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a0,解得0a3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.3.(2016·江西两市联考)已知集合A={x|x2-5x-60},B={x|2x1},则图中阴影部分表示的集合是()A.{x|2x3}B.{x|-1x≤0}C.{x|0≤x<6}D.{x|x-1}解析:选C由x2-5x-6<0,解得-1x6,所以A={x|-1x6}.由2x1,解得x0,所以B={x|x0}.又图中阴影部分表示的集合为(∁UB)∩A,因为∁UB={x|x≥0},所以(∁UB)∩A={x|0≤x<6},故选C.4.(2016·湖北七市联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为()A.147B.140C.130D.117解析:选B由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,与y=3,y=5时,没有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.5.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}[技法融会]1.集合运算中的3种常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴求解;(2)图象法:若已知的集合是点集,用图象法求解;(3)Venn图法:若已知的集合是抽象集合,用Venn图求解.2.(易错提醒)在写集合的子集时,易忽视空集;在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,易忽略A=∅的情况.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件;(2)充要条件与集合的关系:设命题p对应集合A,命题q对应集合B,则p⇒q等价于A⊆B,p⇔q等价于A=B.充要条件的判断[题组练透]1.(2016·湖北七市联考)已知a,b为两个非零向量,设命题p:|a·b|=|a||b|,命题q:a与b共线,则命题p是命题q成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C|a·b|=|a||b|⇔|a||b||cos〈a,b〉|=|a||b|⇔cos〈a,b〉=±1⇔a∥b,故p是q成立的充要条件,选C.2.若p是q的充分不必要条件,则下列判断正确的是()A.¬p是q的必要不充分条件B.¬q是p的必要不充分条件C.¬p是¬q的必要不充分条件D.¬q是¬p的必要不充分条件解析:选C由p是q的充分不必要条件可知p⇒q,qp,由互为逆否命题的两命题等价可得¬q⇒¬p,¬p¬q,∴¬p是¬q的必要不充分条件,选C.3.(2016·天津高考)设{an}是首项为正数的等比数列,公比为q,则“q0”是“对任意的正整数n,a2n-1+a2n0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选C设数列的首项为a1,则a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q)0,即q-1,故q0是q-1的必要而不充分条件.故选C.4.已知“xk”是“3x+11”的充分不必要条件,则k的取值范围是()A.[2,+∞)B.[1,+∞)C.(2,+∞)D.(-∞,-1]解析:选A由3x+11,可得3x+1-1=-x+2x+10,所以x-1或x2,因为“xk”是“3x+11”的充分不必要条件,所以k≥2.[技法融会]1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且qp,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.(易错提醒)“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定是¬p:∃x0∈M,¬p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定是¬p:∀x∈M,¬p(x).命题真假的判定与命题的否定练全冷门题型——知能多人一点[题组练透]1.(2016·南昌一模)已知命题p:函数f(x)=|cosx|的最小正周期为2π;命题q:函数y=x3+sinx的图象关于原点中心对称,则下列命题是真命题的是()A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)解析:选B因为命题p为假,命题q为真,所以p∨q为真命题.2.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2解析:选D由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.3.(2016·广州五校联考)以下有关命题的说法错误的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∨q为假命题,则p,q均为假命题D.对于命题p:∃x∈R,使得x2+x+10,则¬p:∀x∈R,均有x2+x+10解析:选D选项D中¬p应为:∀x∈R,均有x2+x+1≥0.故选D.[技法融会]1.命题真假的4种判定方法(1)一般命题p的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p∨q,p∧q,¬p命题的真假根据真值表判定.(4)全称命题与特称命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例即可;②特称命题:要判定一个特称命题为真命题,只要在限定集合M中至少能找到一个元素x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.2.(易错提醒)“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否定命题p的结论.
本文标题:【三维设计】2017届高三数学理二轮复习通用版第一部分课件基础送分题题型专题一集合与常用逻辑用语
链接地址:https://www.777doc.com/doc-4996202 .html