您好,欢迎访问三七文档
离子液体在汽油柴油脱硫生产清洁燃料中的技术现状摘要:离子液体是一种具有优良特性的绿色材料,本文综述了离子液体的组成、分类和性质,综述了近几年来离子液体在萃取脱硫、萃取脱硫与氧化脱硫耦合、萃取脱硫与烷基化脱硫耦合等方面的研究。认为离子液体萃取脱硫具有操作简便、可循环使用、环境友好、能深度脱硫等特点,是一项具有广阔发展前景的技术。若要实现该技术的工业化应用,还需进一步加强离子液体在合成工艺、脱硫选择性及回收再生等方面的研究。关键词:离子液体;汽油;柴油;脱硫;萃取TechnologyStatusofionicliquidindesulfurizationofgasolineanddieseloilforproductingcleanfuelsAbstract:Ionicliquidsasaenvironmentalprotectedmaterialhasthecharacteristicperformance.Thecomposition,classificationandpropertyofthemwerereviewedinthispaper.Researchesforextractivedesulfurization,couplingofextractiveandoxidativedesulfurizations,andcouplingofextractiveandalkylationdesulfurizationsatroomtemperaturewithionicliquidsasextractantswerereviewed.Trendforextractivedesulfurizationoffueloilwithionicliquidswasforecasted.Technologyofusingionicliquidsinextractivedesulfurizationoffueloilpossessesadvantagesofmildoperationconditions,recyclingofionicliquid,environmentalfriendlyanddeepdesulfurizationcapacity.Forthesakeofcommercializationofthedesulfurizationtechnology,synthesisofappropriateionicliquidextractant,theirselectivityinextractivedesulfurizationandrecyclingoftheusedionicliquidsshouldfurtherbeconcentratedon.Keywords:ionicliquid;gasoline;dieseloil;desulfurization;extraction随着石油工业和汽车工业的飞速发展,汽车尾气所造成的环境污染问题日益严重。汽油和柴油中的硫化物燃烧生成的SOx是汽车尾气中的主要污染物之一[1]。此外,硫含量较高的汽柴油在发动机汽缸内燃烧时对发动机内壁及相关零部件会造成腐蚀,硫化物的存在甚至会使汽车尾气处理装置中的催化剂失活,从而间接导致尾气中氮氧化合物、一氧化碳和二氧化碳等的排放量超标。近几年世界各国对燃油中的硫含量都提出了严格的要求[2-3]。因此,开发有利于环境保护的低硫燃油和燃油脱硫技术已成为当今世界炼油工艺的核心,是工业界和学术界共同关注的焦点。1燃料油脱硫1.1燃料油中含硫化合物的类型石油中硫的存在形式主要有两种,通常将能与金属直接发生反应的硫化物称为“活性硫”,包括元素硫、硫化氢和硫醇。微量元素硫在油品中有良好的溶解作用,当温度高于150℃时,元素硫能与某些烃类反应,生成新的硫化物和硫化氢等。硫化氢属于弱酸性气体,具有较强的反应活性,易溶于油品,易被空气氧化成元素硫。硫醇恶臭有毒,具有弱酸性,反应活性较强,具有强烈的腐蚀作用。不与金属直接发生反应的硫化物称为“非活性硫”,包括硫醚、二硫化物、噻吩等。硫醚属于中性液态物质,热稳定性较高,不与金属发生反应,但其分子中的硫原子有形成高价的倾向。二硫或多硫化物随分子中硫原子数目的增加,稳定性急剧下降,化学活性增强。噻吩和苯并噻吩类属于芳香性的杂环系,热稳定性较高。在这些硫化物中,噻吩占到柴油总硫的80%以上,苯并噻吩和二苯并噻吩又占噻吩类的70%以上。活性硫(硫元素、硫化氢、硫醇、二硫化物和多硫化物也归于此)相对容易脱除,非活性硫(硫醚、噻吩、苯并噻吩)则较难脱除;其中柴油的4,6-二烷基苯并噻吩脱硫非常困难;生产催化裂化(FCC)汽油的原料主要是原油蒸馏或其他炼油装置的350-540℃馏分的重质油,其中硫含量比较高,所含硫化物主要是噻吩类物质,包括噻吩、烷基噻吩、苯并噻吩等,我国也有其他的生产工艺,不过FCC汽油占汽油总产量的80%以上,加上原油含硫量高等原因,导致我国汽油中硫含量比国外高出很多,远远超出环保要求[4]。1.2燃料油脱硫的主要方法面对日趋严格的燃料油硫含量标准及市场对低硫清洁燃料油的巨大需求,世界各国纷纷致力于开发各种油品脱硫技术。目前,燃料油脱硫的工业应用技术主要采用加氢脱硫(HDS)[5]。HDS是指在氢气存在下,经加氢催化剂作用将燃料油中的有机硫化物转化为硫化氢而除去。一般来说石油馏分中硫醇类反应活性最高,最容易转化,而噻吩类硫化物反应活性最低则最难转化。燃料油中噻吩类硫化物占总硫含量的85%以上。要想脱除噻吩类硫化物,则需要较高的温度和压力,这不仅增大脱硫操作的危险系数,而且也很难达到深度脱硫(50μg•g-1)的要求。如果利用HDS生产超低硫油,还需改进现有装置,并研制活性更高的催化剂。另外,加氢装置投资大,操作条件苛刻,且氢源的利用使操作费用较高,导致燃料油成本大幅上升。因此,由于资金、技术等方面的限制,利用HDS生产低硫燃料油是我国很多炼厂难以承受的。鉴于加氢脱硫技术的缺陷,近年来,相继出现了许多非加氢脱硫方法,如生物脱硫[6]、吸附脱硫[7]、氧化脱硫[8]以及烷基化脱硫[9]、离子液体萃取脱硫[10]等,其中氧化脱硫具有脱硫率高、反应条件温和、设备投资和操作费用低、工艺流程简单等优点,被称为面向21世纪的创新炼油技术和绿色炼油技术,已成为国内外研究热点。氧化脱硫技术主要包括含硫化合物的氧化和分离两个步骤。在分离步骤中,多用极性有机溶剂萃取进行脱硫,所选用的有机溶剂主要有乙腈、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等。这些有机溶剂在萃取硫化物的同时,还会萃取大量的芳香族化合物,从而造成油品损失;它们与油相有一定的互溶性,造成油品的污染;另外这些有机溶剂易挥发,毒性一般较大,造成环境污染,违背绿色化学的原则。离子液体作为一种新兴的绿色替代溶剂[11],因其具有高热稳定性、可忽略的蒸气压、宽的液态温度区间、可调控的酸碱性、良好的溶解性等优势,因此能够替代传统有机溶剂应用于化学反应(特别是催化反应),从而实现反应过程的绿色化,因此近年来,离子液体的研究得到了迅猛的发展。如能用离子液体作为萃取剂或催化剂应用于燃料油氧化脱硫[12],则大大降低环境污染。2001年Wasserscheid等[13]首次将离子液体应用于燃料油的萃取脱硫。由于离子液体/催化剂的分离操作简单,且离子液体可循环使用,从而降低了脱硫的操作成本,因此成为近年来发展最快的非加氢脱硫技术之一。2离子液体概述2.1离子液体的定义及性质离子液体是由有机阳离子和无机或有机阴离子构成的、在室温或室温附近呈液体状态的离子化合物,通常也称室温离子液体(RoomTemperatureIonicLiquid:RTIL),或室温熔盐(RoomTemperatureMoltenSalts:RTMS),简称离子液体(IonicLiquid:IL),其熔点一般低于100℃[14]。在这种液体中只存在阴、阳离子,没有中性分子。我们通常所知的离子化合物在室温下一般都是固体,强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动,阴阳离子之间的作用(即离子键)较强,一般具有较高的熔、沸点和硬度,如:NaCl,阴阳离子半径相似,在晶体中做最有效的紧密堆积,每个离子只能在晶格点阵中做振动或有限的摆动,熔点为804℃,由此看来离子液体通常应该在高温下存在。然而,通过选择合适材料可控制在室温下形成离子液体。如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力也无法使阴、阳离子在微观上做密堆积,使得在室温下,阴、阳离子不仅可以振动,甚至可以转动、平动,使整个有序的晶体结构遭到彻底破坏,离子之间作用力也将减小,晶格能降低,从而使这种离子化合物的熔点下降,室温下可能成为液态,即在室温下呈液态,通常将其称作室温离子液体。1914年,第一个室温离子液体硝酸乙基铵被合成出来,其熔点为12℃,但未引起人们的注意。1951年,Hurley和Wier等人[15]报道了由三氯化铝和溴化乙基吡啶(摩尔比为1︰2)形成的室温离子液体,以及利用这种离子液体进行金属的电沉积;随后进行的研究主要是离子液体在电化学方面的应用。但是,三氯化铝类的离子液体对水敏感,极易吸收空气中的水分,不利于操作,研究进展缓慢。进入二十世纪九十年代以后,合成出来了对水和空气不敏感的离子液体[EMI]BF4之后,对离子液体的研究得到迅猛发展。离子液体作为一种新兴的“绿色溶剂”,与传统的有机溶剂相比,具有许多独特的性能[16],主要有:①熔点低,具有较宽的液态范围,可以在很宽范围内选择反应温度;②良好的酸性,并在很大范围内酸性可调;③溶解能力强,能溶解许多有机物、无机物;④几乎没有蒸气压,不挥发、不易燃烧和爆炸,对人和环境低毒,提供了崭新的反应环境,避免了大量挥发性有机溶剂对环境造成的污染和对操作者的伤害,是安全绿色替代溶剂;⑤较好的热稳定性和化学稳定性;⑥高极性;⑦较宽的电化学窗口;⑧可以重复使用。2.2离子液体的组成及分类目前已知的室温离子液体,按其阳离子来划分可分为季铵盐类、季磷盐类、烷基吡啶类和烷基咪唑类;按阴离子可分为金属类(如:AlCl4-、CuCl2-等)和非金属类(如:BF4-、PF6-、NO3-、CH3COO-、CF3COO-等);按Lewis酸性,可分为可调酸碱性的离子液体(如AlCl4-)和中性的离子液体(如BF4-、PF6-、NO3-等)[17]。已知的室温离子液体的主要特点是阳离子较大且不对称,阴离子较小,RTILs一般具有一些独特的性能,如较低的熔点、可调节的Lewis酸度、良好的导电性、宽的电化学窗口、可以忽略的蒸汽压、较宽的使用温度及特殊的溶解性等,而且其物理化学性质可通过对阳离子的修饰或改变阴离子进行调节,如室温离子液体四氟硼酸1-甲基-3-乙基咪唑(简写:[EMI]BF4)可与水混溶,而六氟磷酸1-甲基-3-乙基咪唑(简写:[EMI]PF6)则不与水混溶。某些不含水的室温离子液体不存在水化、水解、析氢等问题,具有不腐蚀、污染小等绿色溶剂应具备的性质。2.3离子液体的合成方法离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。这些合成方法大体上有两种基本方法:直接合成法和间接合成法[18]。2.3.1直接合成法直接合成法通过酸碱中和反应或季铵化反应一步合成离子液体,如1-丁基-3-甲基眯唑盐[EMim][CF3SO3]、[RR′IM]X等操作简便,无副产品,易纯化。2.3.2间接合成法若一步不能得到目标离子液体,就必须采用两步合成法。首先通过季铵化反应制备目标离子卤盐。然后加入Lewis酸MXY或用目标阴离子[A]-置换出X-来得到目标离子液体。在第二步反应中,使用金属盐MY时,产生AgX沉淀或NH3、HX气体而容易除去;加入强质子酸HY反应要求在低温搅拌下进行,然后多次水洗至中性,用有机溶剂提取离子液体,然后真空除去有机溶剂得到纯净的离子液体。3离子液体在汽柴油脱硫中的研究进展3.1离子液体脱硫的优势液-液萃取分离过程作为一种有效的分离方
本文标题:离子液体脱硫
链接地址:https://www.777doc.com/doc-5150975 .html