您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 方开泰、刘民千、周永道《试验设计与建模》课件-1
试验设计和建模周永道四川大学数学学院试验设计和分析教材:方开泰、刘民千、周永道(2011),试验设计和建模。期末最终成绩构成:•期末考试:70%•作业:10%•随堂测试:10%•小课题:10%软件:MATLAB,SPSS参考书•方开泰、马长兴,正交与均勻试验设计,科学出版社,2001.•DouglasC.Montgomery.DesignandAnalysisofExperiments,6thEdition,中国邮电出版社,2007.•Hamada,M.andWu,JeffC.F.,Experiments:Planning,Analysis,andParameterDesignOptimization,Wiley,2000.•Cornell,J.A.ExperimentswithMixtures,3ndEd.,Wiley,2002.•Fang,K.T.,Li,R.andSudjianto,A.DesignandModelingforComputerExperiments,Chapman&Hall/CRCPress,London,2005.第一章试验设计的基本概念1.1科学试验1.1.1试验的重要性•科学试验是人们认识自然、了解自然的重要手段。•许多重要的科学规律都通过科学试验发现和证实。•随着科学和技术的发展,试验涉及的因素越来越多,它们之间的关系更加复杂,光凭经验已不能达到预期要求,于是产生了试验设计这门学科。•设计一个试验涉及到试验目的、试验方案、技术保证、分析数据以及有关组织管理等。这些环节有的是属于管理科学,有的是需要数学和统计学的方法来设计试验方案,后者称为统计试验设计,它是统计学的一个重要分支。统计试验设计是统计学的重要分支,它能大量节省试验的次数。能将试验数据从随机误差的烟幕中去伪存真,抓住事物的规律。所以``一个精心设计的试验是认识世界的有效方法'‘(AtkinsonandDonev(1992))。奠定了现代遗传理论的基础例1.1孟德尔豌豆实验例1.2化工试验在某化工产品的合成工艺中,考虑反应温度(A)、压力(B)和催化剂用量(C),并选择了试验范围分别为:温度(A):80oC~120oC;压力(B):4~6大气压;催化剂用量(C):0.5%~1.5%;我们需要选择这三个因素的最佳组合,以达到高产的目的。许多产品都是混合多种成分在一起形成的。面粉水糖蔬菜汁椰子汁盐发酵粉乳酸钙咖啡粉香料色素面包怎样确定各种成分的比例呢?经验试验混料试验例1.3加工面包试验例1.4环保试验在水及食物中的某些化学元素,吃多了对人体是有害的,为了研究这些元素对人体健康的影响。Cadmium(Cd)镉Copper(Cu)铜Zinc(ZN)锌Nickel(Ni)镍Chromium(Cr)铬Lead(Pb)铅因素0~200~200~200~200~200~200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,200.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14,16,18,20范围和水平试验设计的目的•增加产量•提高质量•降低成本•缩短研究时间科学试验是人类了解自然的手段,通过试验来了解因素和指标(响应)之间的关系,希望一个好的试验设计是用最少的试验次数获得最多的有用信息。试验设计的目的水平组合的比较建模参数估计证实猜想优化筛选发现规律等等…Experimentsareperformedbyinvestigatorsinvirtuallyallfieldsofinquiry,usuallytodiscoversomethingaboutaparticularprocessorsystem.Scientificexperimentsareofessentialimportanceinpeople’ssurvivingandexploringofnature.AwelldesignedexperimentisanefficientmethodoflearningabouttheworldMakeityourmottodayandnight.Anditwillleadyoutothelight.TheUsefulnessofExperimentalDesign•多因素•统计模型未知•响应曲面多峰当代科学试验的复杂性•非线性•响应曲面无解析表达多峰非线性模型瞎子摸象1.1.2试验的重要元素让我们首先通过一个例子来介绍一些重要元素例在一个化工试验中,试验者希望通过如下的可控变量来增加产量:x1:原料品种{m1,m2,m3}x2:加酸量(ml)[10,28]x3:反应时间(时)[0.5,3.5]因素(因子)在试验中可控的并用于考察对试验结果(y)的变量称为因素或因子(factor)。如反应温度、压力、催化剂品种、施化肥量、水稻品种等。因素可以是定量的,也可以是定性的。水平(level)因素变化的范围称为试验区域,在本例中,试验区域为:{m1,m2,m3}x[10,28]x[0.5,3.5].原料品种:m1,m2,m3加酸量:10,19,28反应时间:0.5,1.5,2.5,3.5水平组合因素诸水平的组合称为水平组合(level-combination),如{m2,10,2.5},{m1,28,0.5}。水平组合在文献中又称为处理组合。一个因子设计(Factorialdesign)是一组水平组合。处理,响应在试验环境下对确定的水平组合所作的试验称为一个处理(trial或run)。试验的结果称为响应(response),响应可以是定性的,也可是定量的。不可控的诸微小因素之总和,称为随机误差。同样条件下的两次试验结果可能不同。随机误差存在于一切试验之中。随机误差(randomerror)随机误差随机误差可假定遵从正态分布。方差给出随机误差大之度量。),σN(202σ令为重复试验之响应值,y,yn11iiy,i,,n,me=+=这里,为真值,m独立同分布,遵从。1i,i,,ne=),σN(201221ˆ/,1ˆ().1niiniiyynyynms=====--åå和的无偏估计为m2σAA1A2yLevely29.532.0Response31.033.030.534.5Total190.5均值=190.5/6=31.75自由度:562211ˆ()16.3753.2755iymeandfs==-==åy-mean-2.250.25-0.751.25-1.252.750(y-mean)25.06250.06250.56251.56251.56257.562516.375NOISE随机误差:部份因子设计设有s个因素,它们分别取个水平。则全部水平组合有s,q,q1一个水平组合可视为s维空间的一个点,称为试验点。1Nsiq=Õ个。例如,一个六因素,五水平的全面试验至少需要次试验。6515625N==全面试验若所有的水平组合都作相同重复数的试验,称为全面试验。•在农业、生物等试验中,很难做到试验条件完全一样。•区组的概念成为古典试验设计中非常有用的工具,同一区组的试验有十分近似的试验环境。•区组设计可以避免或减少系统误差的干扰,从而大大提高试验结论的可靠性。•在体育比赛中,区组及有关设计已在普遍使用。区组•试验的环境随着时间的推移,可能有趋势型的变化,如室温渐高、湿度渐小、电压波动加剧等。•为了使试验的结论更加可靠,随机化是用来减少试验误差的重要手段。常用的是对试验次序随机化,哪个试验先做,哪个试验后做,随机决定。•若试验有区组,要根据试验的具体情形采取所有试验的完全随机化,或仅区组内的试验随机化。随机化•同一个试验重复两次或多次是减少试验误差干扰的一种方法,在传统的计算方法中经常使用。•若y1,…,ym是同一个试验条件下的响应,且yi独立同分布,方差为,则均值均值的方差重复11miiyym==å2s()2/Varyms=传统试验的三个基本原则:重复性、随机化、分区组•针对不同的试验,试验者要选择合适的试验方法,建立相应的统计模型统计模型试验的组织和管理•一支专业队伍•明确的试验目标•科学的试验方案•试验中,处理可控与不可控因素A.试验实现方式:1.1.3试验的类型•传统的试验–实验室试验–工业试验•计算机试验–计算机模拟计算–寻找近似模型B.因素约束条件•无约束试验诸因素可以自由的选择试验的值,不受其它因素约束,试验区域是一个超矩形•混料试验因素之间的取值会相互影响,例如或•单因素试验–水平数可以适当多取,而且可以考虑做重复试验•多因素试验–各因素的水平数一般不能取得很大–二水平试验–多水平试验C.因素个数D.响应个数•单响应试验–每次试验只观察一个响应值。如产量•多响应试验–每次试验观察多个响应值。如鞋子橡胶底的试验响应:强度、弹性和最大弯曲次数等等•多媒体试验–试验有无穷多个的响应。例如,响应是人的指纹、化学或生物中指纹曲线、声音的曲线、图像的颜色及深浅,等等E.试验轮次•单一试验–一次试验达到要求•序贯试验–优选法–响应曲面分析–均匀序贯试验•单区组试验–每次试验在相同或十分近似的条件下进行•区组试验–目的是使得组内的差异比组间差异小–常见的区组有以日、月、年、批次、双胞胎,等等F.试验分组例1.5.(自由落体运动)若不计空气阻力,自由落体运动的初始速度为零,记下落时间为x(秒)(s),下落距离y(米)(m),人们发现它们之间有如下规律g为重力加速度。设想试验者对关系(1.3)一无所知,希望通过试验来揭示y和x之间的关系1.2统计模型(1.3)试验结果可用二次回归模型拟合试验设计的统计模型•方差分析模型因子设计,正交设计•参数回归模型最优设计•非参数回归模型均匀设计•稳健回归模型例1.6:威布尔生长曲线方差分析模型在[0,10]中取若干个点作试验,设x1,…,xq为试验点,n1,…,nq为其重复数,其统计模型为用统计方法估计{μ1,…,μq}或{μ,a1,…,aq},以及σ2•二水平试验在西方被广泛推荐•二水平不足以揭示非线性关系•多水平试验值得推荐二水平试验的不足YA1A2YA2A1试验范围对,但水平不合适试验范围及水平都对,但不能揭示A和Y之间更复杂的关系试验范围错YA2A1只能预报四个水平处的响应值,进一步采用回归模型是有益的。试验设计的统计模型•方差分析模型因子设计,正交设计•参数回归模型最优设计•非参数回归模型均匀设计•稳健回归模型根据专业知识,可选用适当的回归模型,比如用二次模型,2210xβxββy(x),332210xβxβxββy(x),)()(11xfβxfβy(x)mm回归模型其中函数f1,…,fm已知,但参数b1,…,bm未知。或三次模型更一般地,•给定试验次数n,希望能获得最精确的回归系数b0,b1,…的估计。•缺点:对模型的变化缺乏稳健性。•Kiefer,J.C.(1958),AnnMath.Stat.•Kiefer,J.C.(1959),JRSS,B,withdiscussion•Atkinson,A.C.andDonev,A.N.(1992),OptimalExperimentalDesigns,ClavendonPress,Oxford三次回归模型的D-最优设计及其拟合如果采用4次多项式模型,效果会显著地改进。试验设计的统计模型•方差分析模型因子设计,正交设计•参数回归模型最优设计•非参数回归模型均匀设计•稳健回归模型,g(x)y
本文标题:方开泰、刘民千、周永道《试验设计与建模》课件-1
链接地址:https://www.777doc.com/doc-5191713 .html