您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016年人教版七年级下册数学知识点
第五章相交线与平等线1.交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。2.对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3.对顶角的性质:对顶角相等。4.邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。5.邻补角的性质:邻补角互补。6、垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:垂线段最短。8、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。9、同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。10、内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。11、同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。12、平行线的概念:在同一平面内,不相交的两条直线叫做平行线。13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。15、平行线的判定方法:(1)判定方法16、1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行。(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。(4)两条直线都和第三条直线平行,那么这两条直线平行。(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。16、命题的概念:判断一件事情的语句叫做命题。17、命题的形式:命题由题设和结论两部分组成,通常可以写成“如果„„那么„„”的形式。“如果”后面的部分是题设,“那么”后面的部分是结论。18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题。19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移。20、平移的性质:(1)平移后的图形与原图形的形状和大小完全相同;(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等第六章实数1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。2、无理数:在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001„等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,3π+8等;3.实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大4、相反数:从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。5、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。6、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。7、判断题易错题型无限小数是有理数(x)无限小数是无理数(x)有理数是无限小数(x)无理数是无限小数(√)数轴上的点都可以用有理数表示(x)有理数都可以由数轴上的点表示(√)数轴上的点都可以用无理数表示(x)无理数都可以由数轴上的点表示(√)数轴上的点都可以用实数表示(√)实数都可以由数轴上的点表示(√)8、平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“a”。9、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。10、立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。11.实数的运算(做题的基础,分值相当大1)、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。2)、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。3)、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。4)、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。5)、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反第七章平面直角坐标系1、有序数对的定义:有顺序的两个数a与b组成的数对叫做有序数对。2、平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴(或横轴),习惯上取向右为正方向;竖直的数轴为y轴(或纵轴),取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点(坐标轴上的点不属于任何象限,原点既在x轴上,又在y轴上)。3、点的坐标有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a点对应x轴的数值为横坐标,b点对应y轴的数值为纵坐标,有序数对就叫做点A的坐标,记作(a,b)。4、坐标平面图坐标平面图是由两条坐标轴和四个象限构成的,也可以说坐标平面内的点可以分为六个区域:x轴上,y轴上,第一象限,第二象限,第三象限,第四象限。在这六个区域中,除x轴与y轴的一个公共点(原点)之外,其他区域之间都没有公共点。5、点的平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x-a,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)第八章二元一次方程组1、二元一次方程的定义:含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。2、二元一次方程的解定义:使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解。3、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。4、二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。5、代入消元法的定义:把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。6、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。7、三元一次方程组的概念:含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组。8、三元一次方程组的解法思路:解三元一次方程组的基本思想仍是消元,一般地,其基本方法是代入法和加减法。一般地,应利用代入法或加减法消去一个未知数,从而变二元一次方程组,求出两个未知数,最后求出另一个未知数。9、三元一次方程组的解题步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。解题策略:(1)有表达式,用代入法;(2)缺某元,消某元。灵活运用加减消元法,代入消元法解简单的三元一次方程组。第九章不等式与不等式组1、不等式的概念:用不等号表示不等关系的式子,叫做不等式。2、不等式的解:对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的值,都叫做这个不等式的解。3、不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。4、不等式的性质不等式的性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变。用式子表示:如果a>b,那么a±c>b±c.不等式的性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。用式子表示:如果a>b,c>0,那么ac>bc(或ac>bc).不等式的性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。用式子表示:如果a>b,c<0,那么ac<bc(或ac<bc).5、不等式解集的数轴表示:为了更清楚、直观地表示出不等式的解集,我们常常利用数轴,在数轴上把解集表示出来,需要注意的地方是,大于向右画,小于向左画,包括端点用“实心圆点”,不包括端点用“空心圆圈”。6、解一元一次不等式的步骤⑴去分母:不等式中有分母的,要通过不等式两边都乘以分母的最小公倍数去分母;⑵去括号:不等式中有括号的要按照有理数中去括号的法则去括号,在去括号过程中要注意符号的变化(注意分数线有括号的作用);⑶移项:将不等式中右边含有未知数的项变号后移到左边,将左边的常数项变号移到右边;⑷合并同类项:把不等式整理成x>a或x<a的形式;⑸化系数为1:把不等式两边都除以同一个正数时,不等号的方向不变,而都除以同一个负数时,不等号的方向必须改变。7、一元一次不等式组的意义:类似于方程组,把几个具有相同未知数的一元一次不等式合起来,就组成一元一次不等式组。8、一元一次不等式组的解集:一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。一元一次不等式组的解集:一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。9、确定一元一次不等式组解集的常用方法有两种:一是数轴法,二是口诀法。①数轴法:利用数轴法确定不等式组的解集,就是将不等式组中的每个不等式的解集在轴上表示出来,然后找出它们的公共部分,这个公共部分就是这个不等式组的解集,无公共部分就说这个不等式组无解。②口诀法:求不等式组的解集时,可记住以下规律“同大取大,同小取小,大小小大中间找,大大小小解不了”。这种方法容易理解,便于记忆,使用十分方便。10、列一元一次不等式组解应用题的步骤为:审题(审)→设未知数(设)→列不等式组(列)→解不等式组(解)→→答(答)
本文标题:2016年人教版七年级下册数学知识点
链接地址:https://www.777doc.com/doc-5222975 .html