您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 旅游娱乐 > lecture7-Scalar-implicature
ImplicatureandlogicalformWehaveseenthatimplicaturesarederivedfrom(a)whatissaid,and;(b)theassumptionthatatleasttheco-operativeprincipleisbeingmaintained.Butexactlywhataspectofwhatissaidisrelevant?Moreprecisely,whatlinguisticlevelorlevelsmustbereferredtointhederivationofanimplicature?Areimplicaturesderivedfrom,for,example,thesurfacestructure,thesemanticrepresentationorthetruthconditions?perhapsPMaybePPossiblyPPotentiallyP(85)possiblynotpThus(86)willimplicate(87):(86)TheremaybelifeonMars(87)TheremaynotbelifeonMars.Consideranyexpressionsoftheform(92)or(93):(92)p(93)pandifpthenpClearlythesewillsharethesametruthconditions:wheneverPistrue,soalso(93)istrue,andviceversa.Butnowcomparetheinstantiationsin(94)and(95):(94)It'sdone(95)It'sdoneandifit'sdone,it'sdoneThelatteralonehasadistinctiveimplicature,roughlythatin(96)(96)It'snogoodregrettingwhathasalreadyhappened(97)Asquarehasfoursides(98)BoysareboysSincethesearebothnecessarilytrue,theymustsharethesametruthconditions.Soifimplicatureswerereadofftruthconditionsalonetheyshouldsharethesameiniplicatures.Butclearlyonlythesecondcouldimplicatesomethinglike“that’sthekindofunrulybehabiouryouwouldexpectfromboys”Nowconsider:(88)Allofthearrowsdidn'thitthetarget.Thisexhibitsawell-knowntypeofambiguity(aso-calledscopeofambiguity)betweenthetwosensesexpressiblebythefollowing(89)~(Vx(A(x)Hit(x,thetarget)))i.e.itisnotthecasethatforallx,ifxisanarrow,thenxhitthetarget.)Vx(A(x)~Hit(x,thetarget)))ie.Forallx,ifxisanarrow,thenitisnotthecasethatxhitthetarget.Here(90)expressesthesense“noneofthearrowhitthetarget”.But(89)ontheotherhandisanexpressionoftheformNotallAsareB;itthereforeimplicates“someAsareB”,thatis)Someofthearrowshitthetarget.GeneralizedQuantityimplicaturesScalarquantityimplicature(等级数量含义)Alinguisticscaleconsistsofasetoflinguisticalternates,orcontrastiveexpressionsofthesamegrammaticalcategory,whichcanbearrangedinalinearorderbydegreeofinformativenessorsemanticstrength.Suchascalewillhavethegeneralformofanorderedset(indicatedbyangledbrackets)oflinguisticexpressionsorscalarpredicates,e1,e2,e3…en,asin:)e1,e2,e3…enwhereifwesubstitutee1ore2etc.,inasententialframeAweobtainthewell-formedsentencesA(e1),A(e2),etc;andwhereA(e1)entailsA(e2),A(e2)entailsA(e3),etc,butnotviceversa.Forexample,taketheEnglishQuantifiersallandsome.Theseformanimplicationalscaleall,some,becauseanysentencelike(118)entails(119)(i.e.,whenever(118)istrue,(119)istruealso)butnotviceversa:118)alloftheboyswenttotheparty.119)Someoftheboyswenttotheparty.Now,givenanysuchscale,thereisgeneralpredictiverulefordrivingasetofquantityimplicature,namelyifaspeakerassertsthatalowerorweakerpoint(i.e.arightwardsitemintheorderedsetofalternates)onascaleobtains,thenheimplicatesthatahigherorstrongerpoint(leftwardsintheorderedset)doesnotobtain.Thusifoneasserts(119),oneconverstionallyimplicatesthatnotalltheboyswenttotheparty;thisissoeventhoughitisquitecompatiblewiththetruthof(119)that(118)isalsotrue,asshownbythenon-contradictorinessof(120):120)Someoftheboyswenttotheparty,infactall.Wemayformulatethisgenerallyasaruleforderivingscalarimplicaturesfromscalarpredicates:121)Scalarimplicatures:Givenanyscaleoftheforme1,e2,e3…en,ifaspeakerassertsA(e2),thenheimplicates~A(e1),ifheassertsA(e3),thenheimplicates~A(e2)and~A(e1),andingeneral,heassertsA(en),thenheimplicates~(A(en-1),~(A(en-2)andsoon,upto~(A(e1))Forscalarimplicaturetobeactuallyinferred,theexpressionthatgivesrisetoitmustbeentailedbyanycomplexsentenceofwhichitisapart.Thustheutteranceof(122)Johnsaysthatsomeoftheboyswent.doesnotcommitthespeakertoknowing“Notallofthemwent.”becausesomeoccursinacomplementclausethatisnotentailedbythematrixclause.Thereforeitisusefultomakethedistinctionbetweenpotentialandactualimplicatures.all,most,many,some,fewand,orn,…5,4,3,2,1excellent,goodhot,warmalways,often,sometimessucceedinVing,trytoV,wanttoVnecessarilyp,p,possiblypcertainthatp,probablethatp,possiblethatpmust,should,maycold,coollove,likeToshowthattheseregularscalarinferencesareindeedimplicaturesweneednowtoproduceaGriceanargumentderivingtheinference.ThespeakerShassaidA(e2);ifSwasinapositiontostatethatastrongeritemonthescaleholds,i.e.toassertA(e1),thenhewouldbeinbreachofthefirstmaximofquantityifheassertedA(e2).SinceItheaddresseeassumethatSiscooperating,andthereforewillnotviolatethemaximofquantitywithoutwarning,Itakeitthatswishestoconveythatheisnotinpositiontostatethatthestrongeriteme1onthescaleholds,andindeedknowsthatitdoesnothold.Moregenerally,andsomewhatmoreexplicitly:(I)Shassaidp(ii)Thereisanexpressionq,moreinformativethanp(andthusqentailsp),whichmightbedesirableasacontributiontothecurrentpurposesoftheexchange.(iii)qisofroughlyequalbrevitytop;soSdidnotsaypratherthanqsimplyinordertobebrief.(iv)sinceifSknewthatqholdsbutneverthelessutteredphewouldbeinbreachoftheinjunctiontomakehiscontributionasinformativeasisrequired,smustmeanme,theaddressee,toinferthatSknowsthatqisnotthecase(K~q),oratleastthathedoesnotknowthatqisthecase(~Kq)ClausalQuantityimplicature(小句数量含义)IfSassertssomecomplexexpressionpwhic
本文标题:lecture7-Scalar-implicature
链接地址:https://www.777doc.com/doc-5271517 .html